Skip to main content

Advertisement

Log in

Synthesis of Zeolite Clay/Fe-Al Hydrotalcite Composite as a Reusable Adsorbent for Adsorption/Desorption of Cationic Dyes

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, zeolite clay was modified with Fe-Al LDH (layered double hydroxide or hydrotalcite) under ultrasonic process and was then used to remove methyl violet (MV) and Nile blue (NB) dyes from aqueous media. Various analyses such as FT-IR, EDX, SEM, and XRD were done to evaluate the adsorbent properties. The highest sorption efficiency of MV and NB dyes was 99.15% and 98.16%, respectively, which indicate significant adsorption efficiencies. The highest adsorption efficiency of MV dye was obtained at pH 8, adsorbent dosage of 1 g/L, contact time of 40 min, dye concentration of 20 mg/L and temperature of 25 °C. Also, the highest adsorption efficiency of NB dye was obtained at pH 9, adsorbent dosage of 1.25 g/L, contact time of 40 min, dye concentration of 20 mg/L and temperature of 25 °C. In addition, the maximum adsorption capacity of MV and NB dyes was found to be 81.98 and 60.61 mg/g, respectively, which are significant values. Moreover, the maximum desorption efficiencies of MV and NB were achieved 99.14% and 98.67%, respectively. Furthermore, the sorption mechanism showed that the intraparticle and film diffusion processes are important in the adsorption process. The aforementioned adsorbent can be effectively reused for five consecutive cycles. Equilibrium and kinetic studies indicated that the Freundlich isotherm model and pseudo-second-order kinetic model fit the experimental data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018). https://doi.org/10.1016/j.molliq.2018.04.021

    Article  Google Scholar 

  2. Boushehrian, M.M.; Esmaeili, H.; Foroutan, R.: Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. J. Environ. Chem. Eng. 8, 103869 (2020). https://doi.org/10.1016/j.jece.2020.103869

    Article  Google Scholar 

  3. Al-Zoubi, H.; Zubair, M.; Manzar, M.S.; Manda, A.A.; Blaisi, N.I.; Qureshi, A.; Matani, A.: Comparative adsorption of anionic dyes (eriochrome black t and Congo red) onto jojoba residues: isotherm, kinetics and thermodynamic studies. Arab. J. Sci. Eng. 45, 7275–7287 (2020). https://doi.org/10.1007/s13369-020-04418-5

    Article  Google Scholar 

  4. Halim, K.A.; Yong, E.L.: Integrating two-stage up-flow anaerobic sludge blanket with a single-stage aerobic packed-bed reactorfor raw palm oil mill effluent treatment. Water Conserv. Manag. 2, 1–4 (2018). https://doi.org/10.26480/wcm.01.2018.01.04

    Article  Google Scholar 

  5. Tahir, U.; Yasmin, A.; Khan, U.H.: Phytoremediation: potential flora for synthetic dyestuff metabolism. J. King Saud Univ. Sci. 28, 119–130 (2016). https://doi.org/10.1016/j.jksus.2015.05.009

    Article  Google Scholar 

  6. Wang, W.-Y.; Ku, Y.: Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation. Water Res. 40, 2249–2258 (2006). https://doi.org/10.1016/j.watres.2006.04.041

    Article  Google Scholar 

  7. Jones, J.J.; Falkinham, J.O.: Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob. Agents Chemother. 47, 2323–2326 (2003). https://doi.org/10.1128/AAC.47.7.2323-2326.2003

    Article  Google Scholar 

  8. Sarwan, B.; Pare, B.; Acharya, A.: Heterogeneous photocatalytic degradation of nile blue dye in aqueous BiOCl suspensions. Appl. Surf. Sci. 301, 99–106 (2014). https://doi.org/10.1016/j.apsusc.2014.01.136

    Article  Google Scholar 

  9. Bansal, R.C.; Goyal, M.: Activated Carbon Adsorption. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  10. Mota, J.P.; Lyubchik, S.: Recent advances in adsorption processes for environmental protection and security. Springer, Amsterdam (2008)

    Book  Google Scholar 

  11. Gözmen, B.; Kayan, B.; Gizir, A.M.; Hesenov, A.: Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods. J. Hazard. Mater. 168, 129–136 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.011

    Article  Google Scholar 

  12. Bessaim, M.M.; Missoum, H.; Bendani, K.; Bekkouche, M.S.; Laredj, N.: Removal of hazardous cationic salt pollutants during electrochemical treatment from contaminated mixed heterogeneous saline soil. Arab. J. Sci. Eng. 44, 4783–4794 (2019). https://doi.org/10.1007/s13369-018-3551-1

    Article  Google Scholar 

  13. He, L.; Li, M.X.; Chen, F.; Yang, S.S.; Ding, J.; Ding, L.; Ren, N.Q.: Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: role of ROS and electron transfer pathway. J. Hazard. Mater. 417, 126113 (2021). https://doi.org/10.1016/j.jhazmat.2021.126113

    Article  Google Scholar 

  14. Zhang, X.; Sun, X.; Lv, T.; Weng, L.; Chi, M.; Shi, J.; Zhang, S.: Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31, 13344–13351 (2020). https://doi.org/10.1007/s10854-020-03888-5

    Article  Google Scholar 

  15. Ali, I.; Burakov, A.E.; Melezhik, A.V.; Babkin, A.V.; Burakova, I.V.; Neskomornaya, M.E.A.; Galunin, E.V.; Tkachev, A.G.; Kuznetsov, D.V.: Removal of copper (II) and zinc (II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. ChemistrySelect 4, 12708–12718 (2019). https://doi.org/10.1002/slct.201902657

    Article  Google Scholar 

  16. Ali, I.; Babkin, A.V.; Burakova, I.V.; Burakov, A.E.; Neskoromnaya, E.A.; Tkachev, A.G.; Panglisch, S.; AlMasoud, N.; Alomar, T.S.: Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: isotherms, kinetics, thermodynamics and desorption. J. Mol. Liq. 329, 115584 (2021). https://doi.org/10.1016/j.molliq.2021.115584

    Article  Google Scholar 

  17. Ali, I.; Kon’kova, T.; Kasianov, V.; Rysev, A.; Panglisch, S.; Mbianda, X.Y.; Habila, M.A.; AlMasoud, N.: Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. J. Mol. Liq. 331, 115770 (2021). https://doi.org/10.1016/j.molliq.2021.115770

    Article  Google Scholar 

  18. Ali, I.; Afshinb, S.; Poureshgh, Y.; Azari, A.; Rashtbari, Y.; Feizizadeh, A.; Hamzezadeh, A.; Fazlzadeh, M.: Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environ. Sci. Pollut. Res. 27, 36732–36743 (2020). https://doi.org/10.1007/s11356-020-09310-1

    Article  Google Scholar 

  19. Ai, L.; Huang, H.; Chen, Z.; Wei, X.; Jiang, J.: Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J. 156, 243–249 (2010). https://doi.org/10.1016/j.cej.2009.08.028

    Article  Google Scholar 

  20. Mahini, R.; Esmaeili, H.; Foroutan, R.: Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turk. J. Biochem. 43, 623–631 (2018). https://doi.org/10.1515/tjb-2017-0333

    Article  Google Scholar 

  21. Esmaeili, H.; Foroutan, R.: Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J. Dispers. Sci. Technol. 40, 990–999 (2019). https://doi.org/10.1080/01932691.2018.1489828

    Article  Google Scholar 

  22. Foroutan, R.; Mohammadi, R.; Ramavandi, B.: Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe2O4 as a recyclable magnetic composite. Environ. Sci. Pollut. Res. 26, 19523–19539 (2019). https://doi.org/10.1007/s11356-019-05282-z

    Article  Google Scholar 

  23. Özcan, A.S.; Erdem, B.; Özcan, A.: Adsorption of Acid Blue 19 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J. Colloid Interface Sci. 280, 44–54 (2004). https://doi.org/10.1016/j.jcis.2004.07.035

    Article  Google Scholar 

  24. Bouberka, Z.; Kacha, S.; Kameche, M.; Elmaleh, S.; Derriche, Z.: Sorption study of an acid dye from an aqueous solutions using modified clays. J. Hazard. Mater. 119, 117–124 (2005). https://doi.org/10.1016/j.jhazmat.2004.11.026

    Article  Google Scholar 

  25. Harris, R.G.; Wells, J.D.; Johnson, B.B.: Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf. A Physicochem. Eng. Asp. 180, 131–140 (2001). https://doi.org/10.1016/S0927-7757(00)00747-0

    Article  Google Scholar 

  26. Sajidu, S.; Persson, I.; Masamba, W.; Henry, E.: Mechanisms of heavy metal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS. J. Hazard. Mater. 158, 401–409 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.087

    Article  Google Scholar 

  27. Garcıa-Sánchez, A.; Alastuey, A.; Querol, X.: Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Sci. Total Environ. 242, 179–188 (1999). https://doi.org/10.1016/S0048-9697(99)00383-6

    Article  Google Scholar 

  28. Sanchez, L.M.; Ollier, R.P.; Gonzalez, J.S.; Alvarez, V.A.: Nanocomposite materials for dyes removal. In: Handbook of Nanomaterials for Industrial Applications: Micro and Nano Technologies, pp. 922–951. Elsevier (2018)

  29. Barrera, K.; Briso, A.; Ide, V.; Martorana, L.; Montes, G.; Basualto, C.; Borrmann, T.; Valenzuela, F.: Treatment of acidic mine drainage in an adsorption process using calcium silicate modified with Fe (III). Hydrometallurgy 172, 19–29 (2017). https://doi.org/10.1016/j.hydromet.2017.06.016

    Article  Google Scholar 

  30. Simpen, N.; DwiAdhiSuastuti, N.G.A.M.; Sutha Negara, I.M.; Ratnayani, O.: Adsorption of Cr(VI) using the adsorbent of hydroxyapatite extracted from Bali bovine bone waste and coated with Fe-Al oxides. Res J. Chem. Environ. Sci. 6, 23–29 (2018)

    Google Scholar 

  31. Liu, Z.; Yu, J.; Yang, L.; Dai, Y.; Wang, Y.; Zhou, L.: Preparation of Fe-loaded activated carbon and its adsorption property of U (VI) in aqueous solution. J. Radioanal. Nucl. Chem. 317, 1223–1233 (2018). https://doi.org/10.1007/s10967-018-6037-4

    Article  Google Scholar 

  32. Ali, I.; Alharbi, O.M.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018). https://doi.org/10.1007/s11356-018-1315-9

    Article  Google Scholar 

  33. Ma, Z.; Zhang, Q.; Weng, X.; Mang, C.; Si, L.; Guan, Z.; Cheng, L.: Fluoride ion adsorption from wastewater using magnesium (II), aluminum (III) and titanium (IV) modified natural zeolite: kinetics, thermodynamics, and mechanistic aspects of adsorption. J. Water Reuse Desal. 8, 479–489 (2018). https://doi.org/10.2166/wrd.2017.037

    Article  Google Scholar 

  34. Lǚ, J.; Liu, H.; Liu, R.; Zhao, X.; Sun, L.; Qu, J.: Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technol. 233, 146–154 (2013). https://doi.org/10.1016/j.powtec.2012.08.024

    Article  Google Scholar 

  35. Lashanizadegan, M.; Esfandiari, Z.; Mirzazadeh, H.: Evaluation performance of Fe–Mn–Ce–O mixed metal oxides and Fe–Mn–Ce–O/Montmorillonite for adsorption of azo dyes in aqueous solution and oxidation reaction. Mater. Res. Express. 6, 125028 (2019). https://doi.org/10.1088/2053-1591/ab5550

    Article  Google Scholar 

  36. Choi, H.-J.; Yu, S.-W.; Kim, K.H.: Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. J. Taiwan Inst. Chem. E. 63, 482–489 (2016). https://doi.org/10.1016/j.jtice.2016.03.005

    Article  Google Scholar 

  37. Llorente, A.; Serrano, B.; Baselga, J.: The effect of polymer grafting in the dispersibility of alumina/polysulfone nanocomposites. Macromol. Res. 25, 11–20 (2017). https://doi.org/10.1007/s13233-016-4150-1

    Article  Google Scholar 

  38. Zheng, Z.; Ma, X.; Zhang, Z.; Li, Y.: In-situ transition of amorphous gels to Na-P1 zeolite in geopolymer: mechanical and adsorption properties. Constr. Build. Mater. 202, 851–860 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.067

    Article  Google Scholar 

  39. Pooladi, H.; Foroutan, R.; Esmaeili, H.: Synthesis of wheat bran sawdust/Fe 3 O 4 composite for the removal of methylene blue and methyl violet. Environ. Monit. Assess. 193, 276 (2021). https://doi.org/10.1007/s10661-021-09051-9

    Article  Google Scholar 

  40. Ramesh, A.; Hasegawa, H.; Maki, T.; Ueda, K.: Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep. Purif. Technol. 56, 90–100 (2007). https://doi.org/10.1016/j.seppur.2007.01.025

    Article  Google Scholar 

  41. Hu, L.B.; Huang, X.Y.; Zhang, S.; Chen, X.; Dong, X.H.; Jin, H.; Jiang, Z.Y.; Gong, X.R.; Xie, Y.X.; Li, C.; Chi, Z.T.: MoO3 structures transition from nanoflowers to nanorods and their sensing performances. Mater. Electron. 32, 23728 (2021). https://doi.org/10.1007/s10854-021-06464-7

    Article  Google Scholar 

  42. Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  43. Guan, Q.; Zeng, G.; Song, J.; Liu, C.; Wang, Z.; Wu, S.: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. J. Environ. Manag. 293, 112961 (2021). https://doi.org/10.1016/j.jenvman.2021.112961

    Article  Google Scholar 

  44. Li, M.; Liu, H.; Duan, P.; Ruan, S.; Zhang, Z.; Ge, W.: The effects of lithium slag on microstructure and mechanical performance of metakaolin-based geopolymers designed by response surface method (RSM). Constr. Build Mater. 299, 123950 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123950

    Article  Google Scholar 

  45. Zhong, P.; Yu, Q.; Zhao, J.; Xu, S.; Qiu, X.; Chen, J.: Degradation of bisphenol A by Fe-Al layered double hydroxides: a new synergy of homo-and heterogeneous Fenton systems. J. Colloid Interface Sci. 552, 122–133 (2019). https://doi.org/10.1016/j.jcis.2019.05.040

    Article  Google Scholar 

  46. Takmil, F.; Esmaeili, H.; Mousavi, S.M.; Hashemi, S.A.: Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv. Powder Technol. 31, 3236–3245 (2020). https://doi.org/10.1016/j.apt.2020.06.015

    Article  Google Scholar 

  47. Bind, A.; Goswami, L.; Prakash, V.: Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, characterization, regeneration and cost estimation. Geol. Ecol. Landsc. 2, 61–72 (2018). https://doi.org/10.1080/24749508.2018.1452460

    Article  Google Scholar 

  48. Hameed, B.H.: Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753–759 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.019

    Article  Google Scholar 

  49. Yang, X.; Li, Y.; Du, Q.; Sun, J.; Chen, L.; Hu, S.; Wang, Z.; Xia, Y.; Xia, L.: Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci. 453, 107–114 (2015). https://doi.org/10.1016/j.jcis.2015.04.042

    Article  Google Scholar 

  50. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018). https://doi.org/10.1002/chir.22989

    Article  Google Scholar 

  51. Sen, B.; Goswami, S.; Devi, G.; Sarma, H.P.; Bind, A.: Valorization of Adenanthera pavonina seeds as a potential biosorbent for lead and cadmium removal from single and binary contaminated system. Geol. Ecol. Landsc. 2, 275–287 (2018). https://doi.org/10.1080/24749508.2018.1464266

    Article  Google Scholar 

  52. Ali, I.; Alharbi, O.M.; ALOthman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M.: Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.211

    Article  Google Scholar 

  53. Abetua, A.G.; Kebedeb, A.B.: Crushed concrete as adsorptive material for removal of phosphate ions from aqueous solutions. Water Conserv. Manag. 2, 40–46 (2021). https://doi.org/10.26480/wcm.02.2021.40.46

    Article  Google Scholar 

  54. Fanta, A.B.; Nair, A.M.; Sægrov, S.; Østerhus, S.W.: Phosphorus removal from industrial discharge impacted municipal wastewater using sequencing batch moving bed biofilm reactor. J. Water Process Eng. 41, 102034 (2021). https://doi.org/10.1016/j.jwpe.2021.102034

    Article  Google Scholar 

  55. Zafisah, N.S.; Ang, W.L.; Mohammad, A.W.: Cake filtration for suspended solids removal in digestate from anaerobic digested palm oil mill effluent (pome). Water Conserv. Manag. 2, 5–9 (2018). https://doi.org/10.26480/wcm.01.2018.05.09

    Article  Google Scholar 

  56. Chen, Y.; He, L.; Li, J.; Zhang, S.: Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput. Chem. Eng. 109, 216–235 (2018). https://doi.org/10.1016/j.compchemeng.2017.11.014

    Article  Google Scholar 

  57. Vitela-Rodriguez, A.V.; Rangel-Mendez, J.R.: Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. J. Environ. Manag. 114, 225–231 (2013). https://doi.org/10.1016/j.jenvman.2012.10.004

    Article  Google Scholar 

  58. Anayurt, R.A.; Sari, A.; Tuzen, M.: Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem. Eng. J. 151, 255–261 (2009). https://doi.org/10.1016/j.cej.2009.03.002

    Article  Google Scholar 

  59. Twang, S.M.; Zaini, M.A.A.; Salleh, L.M.; Azizi, M.; Yunus, C.; Naushad, M.: Potassium hydroxide-treated palm kernel shell sorbents for the efficient removal of methyl violet dye. Desalin. Water Treat. 84, 262–270 (2017). https://doi.org/10.5004/dwt.2017.21206

    Article  Google Scholar 

  60. Abbasi, S.; Noorizadeh, H.: Adsorption of Nile Blue A from aqueous solution by different nanostructured carbon adsorbents. Carbon Lett. 23, 30–37 (2017). https://doi.org/10.5714/CL.2017.23.030

    Article  Google Scholar 

  61. Korkmaz, M.; Özmetin, C.; Fil, B.A.; Özmetin, E.; Yaşar, Y.: Methyl violet dye adsorption onto clinoptilolite (natural zeolite): isotherm and kinetic study. Fresen. Environ. Bull. 22, 1526–1536 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Esmaeili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, M., Esmaeili, H. & Tamjidi, S. Synthesis of Zeolite Clay/Fe-Al Hydrotalcite Composite as a Reusable Adsorbent for Adsorption/Desorption of Cationic Dyes. Arab J Sci Eng 47, 6651–6665 (2022). https://doi.org/10.1007/s13369-022-06580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06580-4

Keywords

Navigation