Skip to main content

Advertisement

Log in

Removal of Hazardous Cationic Salt Pollutants During Electrochemical Treatment from Contaminated Mixed Heterogeneous Saline Soil

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Salt-affected soils are found mainly in arid and semiarid regions. In these areas, weak precipitation rate causes salt accumulation at high level on the soil surfaces, leading to drastic modifications in soil properties, affecting hence the environment, human health and civil engineering infrastructure and facilities. This research aimed to study the performance of the electrochemical treatment on removal of hazardous cationic salt including sodium, potassium and magnesium cations. The novelty of this work lies in the investigation of the potential of electroosmosis phenomenon as a driving vector in the removal of cationic hazardous salt during its regularized path toward the cathodic area. Therefore, a controlled-permanent analysis of contaminated catholyte water over processing time was achieved, in order to understand the evolution of contaminant removal during treatment time via the electroosmosis process. For this purpose, five relevant indices were evaluated, including electric current, electroosmotic flow, pH, electrical conductivity and cationic hazardous salt removal efficiency. Experimental tests were conducted in laboratory-designed cell using different electric potential difference for a total period of 8 days. Owing to the electroosmosis phenomenon, salt contaminants migrated and accumulated in the catholyte chamber, facilitating thereby their removal. Among these contaminants, sodium and potassium exhibit the highest decontamination efficiency with a rate of 88 and 85%, respectively. Magnesium ions show moderate removal with a percentage of 53%, due to the pH gradient, degree of hydration, ionic valence and mobility. The results demonstrate that the electrochemical treatment may be an efficient method for remediation of saline low-permeable heterogeneous soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I.: Salt-Affected Soils and Their Management, vol. 39. FAO Soils Bulletin. Food and Agriculture Organization of the United Nations, Rome (1988)

    Google Scholar 

  2. Evangelou, V.P.: Environmental Soil and Water Chemistry: Principles and Applications. Wiley, New York (1998)

    Google Scholar 

  3. Hamdan, S.H.; Molelekwa, G.F.; Bruggen, B.V.: Electrokinetic remediation technique: an integrated approach to finding new strategies for restoration of saline soil and to control seawater intrusion. ChemElectroChem 1, 1104–1117 (2014). https://doi.org/10.1002/celc.201402071

    Article  Google Scholar 

  4. Lukman, S.; Mu’azu, N.D.; Essa, M.H.; Usman, A.: Optimal removal of cadmium from heavily contaminated saline–sodic soil using integrated electrokinetic adsorption technique. Arab. J. Sci. Eng. 40, 1289–1297 (2015)

    Article  Google Scholar 

  5. Sonon, L.S.; Saha, U.; Kissel, D.E.: Soil Salinity, Testing, Data Interpretation and Recommendations. The University of Georgia, Cooperative Extension, College of Agricultural and Environmental Sciences, Circular No. 1019 (2012)

  6. Khanamani, A.; Fathizad, H.; Karimi, H.; Shojaei, S.: Assessing desertification by using soil indices. Arab. J. Geosci. 10, 287 (2017). https://doi.org/10.1007/s12517-017-3054-5

    Article  Google Scholar 

  7. Jayasekera, S,: Stabilising volume change characteristics of expansive soils using electrokinetics: a laboratory based investigation. In: International Conference in Geotechnical Engineering: Colombo, Sri Lanka (2007)

  8. Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z.: Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ. Int. 31, 784–790 (2005)

    Article  Google Scholar 

  9. Yang, J.S.; Kwon, M.J.; Choi, J.; Baek, K.; O’Loughlin, E.J.: The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere 117, 79–86 (2014)

    Article  Google Scholar 

  10. Bahemmat, M.; Farahbakhsh, M.; Shabani, F.: Compositional and metabolic quotient analysis of heavy metal contaminated soil after electroremediation. Environ. Earth Sci. 74, 4639–4648 (2015)

    Article  Google Scholar 

  11. Yuan, L.; Li, H.; Xu, X.; Zhang, J.; Wang, N.; Yu, H.: Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode. Electrochim. Acta 213, 140–147 (2016)

    Article  Google Scholar 

  12. Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.H.; Cai, Y.; Kennelley, E.D.: A fern that hyperaccumulates arsenic. Nature 411, 438–438 (2001)

    Article  Google Scholar 

  13. Libralato, G.; Losso, C.; Arizzi Novelli, A.; Citron, M.; Della Sala, S.; Zanotto, E.; Cepak, F.; Volpi Ghirardini, A.: Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment. Environ. Pollut. 156, 644–650 (2008)

    Article  Google Scholar 

  14. Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F.: Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125, 1–8 (2015)

    Article  Google Scholar 

  15. DNRE, The state of water, Department of Natural Resources and environment, The state of Victoria (2002)

  16. Reddy, K.R.; Shirani, A.B.: Electrokinetic remediation of metal contaminated glacial tills. Geotech. Geol. Eng. 15, 3–29 (1997)

    Google Scholar 

  17. Alshawabkeh, A.N.: Basics and application of electrokinetic remediation. In: Handouts Prepared for a Short Course. Federal University of Rio de Janeiro, Rio de Janeiro (2001)

  18. Jayasekera, S.; Hall, S.: Modification of the properties of salt affected soils using electrochemical treatments. Geotech. Geol. Eng. 25, 1–10 (2007)

    Article  Google Scholar 

  19. Lukman, S.; Essa, M.H.; Mu’azu, N.D.; Bukhari, A.: Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. Sci. World J. 2013, 346910 (2013). https://doi.org/10.1155/2013/346910

    Article  Google Scholar 

  20. Mu’azu, N.D.; Essa, M.H.; Lukman, S.: Response surface modeling of rate of replenishing processing fluids during hybrid electrokinetics-adsorption treatment of saline–sodic soil. Arab. J. Sci. Eng. 40, 1–11 (2016)

    Google Scholar 

  21. Acar, Y.B.; Alshawabkeh, A.: Principles of electrokinetic remediation. Environ. Sci. Technol. 27(13), 2638–2647 (1993)

    Article  Google Scholar 

  22. Virkutyte, J.; Sillanpaa, M.; Latostenmaa, P.: Electrokinetic soil remediation critical overview. Sci. Total Environ. 289, 97–121 (2002)

    Article  Google Scholar 

  23. Paramkusam, B.R.; Srivastava, R.K.; Mohan, D.: Electrokinetic removal of mixed heavy metals from a contaminated low permeable soil by surfactant and chelants. Environ. Earth Sci. 73, 1191–1204 (2015). https://doi.org/10.1007/s12665-014-3474-4

    Article  Google Scholar 

  24. Drogui, P.; Blais, J.F.; Mercier, G.: Review of electrochemical technologies for environmental applications. Recent Pat. Eng. 1, 257–272 (2007)

    Article  Google Scholar 

  25. Karim, M.A.: Electrokinetics and soil decontamination: concepts and overview. J. Electrochem. Sci. Eng. 4(4), 297–313 (2014)

    Article  Google Scholar 

  26. López-Vizcaíno, R.; Yustres, A.; León, M.J.; Saez, C.; Cañizares, P.; Rodrigo, M.A.; Navarro, V.: Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters. Electrochim. Acta 225, 93–104 (2017)

    Article  Google Scholar 

  27. Cameselle, C.; Reddy, K.R.: Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim. Acta. 86, 10–22 (2012)

    Article  Google Scholar 

  28. Moayedi, H.; Kassim, K.A.; Kazemian, S.; Raftari, M.; Mokhberi, M.: Improvement of peat using Portland cement and electrokinetic injection technique. Arab. J. Sci. Eng. 39(10), 6851–6862 (2014)

    Article  Google Scholar 

  29. Pamukcu, S.; Weeks, A.; Wittle, J.K.: Electrochemical extraction and stabilization of selected inorganic species in porous media. J. Hazard. Mater. 55, 305–318 (1997)

    Article  Google Scholar 

  30. Lestan, D.; Lu, C.L.; Li, X.D.: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ. Pollut. 153, 3–13 (2008)

    Article  Google Scholar 

  31. Bongay, D.J.R.; Ngo, R.L.: Electroremediation of Cu-contaminated soil. Int. J. Chem. Biol. Eng. 6, 96–101 (2012)

    Google Scholar 

  32. Wu, H.; Hu, L.M.; Wen, Q.B.: Electro-osmotic enhancement of bentonite with reactive and inert electrodes. Appl. Clay Sci. 111(7), 76–82 (2015)

    Article  Google Scholar 

  33. Mitchell, J.K.; Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, New York (2005)

    Google Scholar 

  34. Yukselen-Aksoy, Y.; Reddy, K.R.: Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim. Acta 86, 164–169 (2012)

    Article  Google Scholar 

  35. Li, D.; Tan, X.Y.; Wu, X.D.; Pan, C.; Xu, P.: Effects of electrolyte characteristics on soil conductivity and current in electrokinetic remediation of lead-contaminated soil. Sep. Purif. Technol. 135, 14–21 (2014)

    Article  Google Scholar 

  36. Maturi, K.; Reddy, K.R.: Simultaneous removal of heavy metals and organic contaminants from soils by electrokinetics using a modified cyclodextrin. Chemosphere 63(6), 1022–1031 (2006)

    Article  Google Scholar 

  37. Cameselle, C.; Chirakkara, R.A.; Reddy, K.R.: Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4), 626–63 (2013)

    Article  Google Scholar 

  38. INSID (2008) Les sols salins en Algérie. Institut national des sols, de l’irrigation et du drainage

  39. Koppen climate classification. https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_Classification

  40. Miller, J.C.; Miller, J.N.: Statistics and Chemometrics for Analytical Chemistry, 4th edn. Prentice Hall, Harlow (2000)

    MATH  Google Scholar 

  41. Hamed, J.; Acar, Y.B.; Gale, R.J.: Pb (II) removal from kaolinite by electro-kinetics. J. Geotech. Eng. 117, 241–270 (1991)

    Article  Google Scholar 

  42. Cho, J.; Park, S.; Baek, K.: Electrokinetic restoration of saline agricultural lands. J. Appl. Electrochem. 40, 1085–1093 (2010)

    Article  Google Scholar 

  43. Cameselle, C.: Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochim. Acta 181, 31–38 (2015)

    Article  Google Scholar 

  44. Hamed, J.T.: Decontamination of soil using electro-osmosis. PhD dissertation, Louisiana State University, p. 194 (1990).

  45. Li, T.; Guo, S.; Wu, B.; Li, F.; Niu, Z.: Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. J. Environ. Sci. 22, 1381–1386 (2010)

    Article  Google Scholar 

  46. Peng, C.; Almeira, J.O.; Gu, Q.: Effect of electrode configuration on pH distribution and heavy metal ions migration during soil electrokinetic remediation. Environ. Earth Sci. 69(1), 257–265 (2013)

    Article  Google Scholar 

  47. Altaee, A.; Smith, R.; Mikhalovsky, S.: The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process. J. Environ. Manag. 88, 1611–1618 (2008)

    Article  Google Scholar 

  48. Choi, J.; Lee, Y.; Lee, H.; Ha, T.; Bae, J.: Removal characteristics of salts of greenhouse in field test by in situ electrokinetic process. Electrochim. Acta 86, 63–71 (2012)

    Article  Google Scholar 

  49. Lee, Y.J.; Choi, J.H.; Lee, H.G.; Ha, T.H.: In situ electrokinetic removal of salts from greenhouse soil using iron electrode. Sep. Sci. Technol. 48, 749–756 (2013)

    Article  Google Scholar 

  50. Zhu, S.; Zhu, D.; Wang, X.: Removal of fluorine from red mud (bauxite residue) by electrokinetics. Electrochim. Acta 242, 300–306 (2017)

    Article  Google Scholar 

  51. Abou-Shady, A.: Reclaiming salt-affected soils using electro-remediation technology: PCPSS evaluation. Electrochim. Acta 190, 511–520 (2016)

    Article  Google Scholar 

  52. Soltner, D.: Les bases de la production végétale. Tome 1: le sol. Collection Sciences et Techniques Agricoles, 19ème édition, Sainte Gemmes sur Loire (1992)

  53. Atkins, P.W.: Physical Chemistry, 4th ed., pp. 755–756 and 963. Freeman, San Francisco (1990)

  54. Dean, J.A.: Lange’s Handbook of Chemistry, 14th edn. McGraw-Hill, New York (1992)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the chemical department for their help in this research. The authors, therefore, acknowledge with thanks the Environmental Research Council for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mustapha Bessaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessaim, M.M., Missoum, H., Bendani, K. et al. Removal of Hazardous Cationic Salt Pollutants During Electrochemical Treatment from Contaminated Mixed Heterogeneous Saline Soil. Arab J Sci Eng 44, 4783–4794 (2019). https://doi.org/10.1007/s13369-018-3551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3551-1

Keywords

Navigation