Skip to main content
Log in

Production of Phytase, Protease and Xylanase by Aspergillus niveus with Rice Husk as a Carbon Source and Application of the Enzymes in Animal Feed

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Plant-based foods often contain antinutritional factors like phytic acid and non-starch polysaccharides, which hinder nutrient absorption in animals. To counter these effects, enzymes derived from filamentous fungi can mitigate antinutritional properties, benefiting gut health, nutrient availability, and digestibility in non-ruminant animals. Employing Aspergillus niveus, we investigated enzyme production using various alternative carbon sources, as well as biochemical factors including temperature and pH, in addition to the in vitro application of enzymes in animal feed. Notably, A. niveus achieved peak phytase production with rice husk (1.93 ± 0.01 U/mg), while the best protease production was with crushed brown rice (0.75 ± 0.03 U/mg) and xylanase with wheat bran (4.66 ± 1.38 U/mg). In the in vitro feed tests, A. niveus phytase displayed significant activity in WB and RB (2.21 ± 0.15 and 2.12 ± 0.37 µmol/mL, respectively), outperforming commercial phytase in RB (1.86 ± 0.04 µmol/mL). A. niveus protease hydrolysis was superior in RB (8.34 ± 0.76 µmol/mL) and the xylanase promoted hydrolysis of all feeds evaluated, surpassing commercial xylanase. After 8 h of incubation, A. niveus xylanase yielded optimal results in CN (38.63 ± 5.22 µmol/mL), while commercial enzyme exhibited activity in ADF (9.81 ± 1.75 µmol/mL) diet. Fungi producing pH-resistant enzymes and with potential for action in animal feed are important to be applied in the agroindustry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data are described and available in the article.

Abbreviations

SSC:

Solid-state cultivation

CN:

Corn

SG:

Sorghum

ML:

Millet

SM:

Soybean meal

WB:

Wheat bran

RB:

Rice bran

SH:

Soybean hulls

DDGS-E:

Distillers dried grains with solubles-Ethanol

DDGS-C:

Distillers dried grains with solubles-Cob

CNSM:

Corn and soybean meal

ADF:

Alternative diet—pure fiber

References

  1. Bibi, F., Ilyas, N., Saeed, M., Shabir, S., Shati, A.A., Alfaifi, M.Y., Amesho, K.T.T., Chowdhury, S., Sayyed, R.Z.: Innovative production of value-added products using agro-industrial wastes via solid-state fermentation. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-28765-6

    Article  Google Scholar 

  2. Rojas, L.F., Zapata, P., Ruiz-Tirado, L.: Agro-industrial waste enzymes: perspectives in circular economy. Curr. Opin. Green Sustain. Chem. (2022). https://doi.org/10.1016/j.cogsc.2021.100585

    Article  Google Scholar 

  3. Sadh, P.K., Duhan, S., Duhan, J.S.: Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess. (2018). https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  4. Barcelos, M.C.S., Ramos, C.L., Kuddus, M., Rodrigues-Couto, S., Srivastava, N., Ramteke, P.W., Mishra, P.K., Molina, G.: Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol. Lett. (2020). https://doi.org/10.1007/s10529-020-02957-3

    Article  PubMed  Google Scholar 

  5. Feng, J., Techapun, C., Phimolsiripol, Y., Phongthai, S., Khemacheewakul, J., Taesuwan, S., Mahakuntha, C., Porninta, K., Htike, S.L., Kumar, A., Nunta, R., Sommanee, S., Leksawasdi, N.: Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: a review. Bioresour. Technol. (2024). https://doi.org/10.1016/j.biortech.2023.129926

    Article  PubMed  Google Scholar 

  6. Naik, B., Kumar, V., Rizwanuddin, S., Chauhan, M., Gupta, A.K., Rustagi, S., Kumar, V., Gupta, S.: Agro-industrial waste: a cost-effective and eco-friendly substrate to produce amylase. Food Prod. Process. Nutr. (2023). https://doi.org/10.1186/s43014-023-00143-2

    Article  Google Scholar 

  7. Balasubramanian, B., Park, J.H., Shanmugam, S., Kim, I.H.: Influences of enzyme blend supplementation on growth performance, nutrient digestibility, fecal microbiota and meat-quality in grower-finisher pigs. Animals (2020). https://doi.org/10.3390/ani10030386

    Article  PubMed  Google Scholar 

  8. Moita, V.H.C., Kim, S.W.: Nutritional and functional roles of phytase and xylanase enhancing the intestinal health and growth of nursery pigs and broiler chickens. Review. Anim. (2022). https://doi.org/10.3390/ani12233322

    Article  Google Scholar 

  9. Lucio, B.S.V., Hernández-Domínguez, E.M., Villa-García, M., Díaz-Godínez, G., Mandujano-Gonzalez, V., Mendoza-Mendoza, B., Álvarez-Cervantes, J.: Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts (2021). https://doi.org/10.3390/catal11070851

    Article  Google Scholar 

  10. Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R., Roussos, S.: Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. (2000). https://doi.org/10.1016/s1369-703x(00)00084-x

    Article  PubMed  Google Scholar 

  11. Ravindran, V., Ravindran, G., Sivalogan, S.: Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. (1994). https://doi.org/10.1016/0308-8146(94)90109-0

    Article  Google Scholar 

  12. Bloot, A.P.M., Kalschne, D.L., Amaral, J.A.S., Baraldi, I.J., Canan, C.: A review of phytic acid sources, obtention, and applications. Food Rev. Intl. (2021). https://doi.org/10.1080/87559129.2021.1906697

    Article  Google Scholar 

  13. Duong, Q.H., Lapsley, K.G., Pegg, R.B.: Inositol phosphates: health implications, methods of analysis, and occurrence in plant foods. J. Food Bioact. (2018). https://doi.org/10.31665/JFB.2018.1126

    Article  Google Scholar 

  14. Vasudevan, U.M., Jaiswal, A.K., Krishna, S., Pandey, A.: Thermostable phytase in feed and fuel industries. Biores. Technol. (2019). https://doi.org/10.1016/0308-8146(94)90109-0

    Article  Google Scholar 

  15. Kumar, A., Chanderman, A., Makolomakwa, M., Perumal, K., Singh, S.: Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit. Rev. Environ. Sci. Technol. (2016). https://doi.org/10.1080/10643389.2015.1131562

    Article  Google Scholar 

  16. Jaworski, N.W., Lærke, H.N., Bach Knudsen, K.E., Stein, H.H.: Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. (2015). https://doi.org/10.2527/jas.2014-8147

    Article  PubMed  Google Scholar 

  17. Baker, J.T., Duarte, M.E., Holanda, D.M., Kim, S.W.: Friend or foe? Impacts of dietary xylans, xylooligosaccharides, and xylanases on intestinal health and growth performance of monogastric animals. Animals (2021). https://doi.org/10.3390/ani11030609

    Article  PubMed  PubMed Central  Google Scholar 

  18. Craig, A.D., Khattak, F., Hastie, P., Bedford, M.R., Olukosi, O.A.: Xylanase and xylo- oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Br. Poult. Sci. (2020). https://doi.org/10.1080/00071668.2019.1673318

    Article  PubMed  Google Scholar 

  19. Choct, M.: Feed non-starch polysaccharides for monogastric animals: classification and function. Animal Prod. Sci. (2015). https://doi.org/10.1071/AN15276

    Article  Google Scholar 

  20. Tiwari, U.P., Chen, H., Kim, S.W., Jha, R.: Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. (2018). https://doi.org/10.1016/j.anifeedsci.2018.07.002

    Article  Google Scholar 

  21. Imran, M., Nazar, M., Saif, M., Khan, M.A., Sanaullah, V.M., Javed, O.: Role of enzymes in animal nutrition: a review. PSM Vet. Res. 1, 38–45 (2016)

    Google Scholar 

  22. Café, M.B., Borges, C.A., Fritts, C.A., Waldroup, P.W.: Avizyme improves performance of broilers fed corn-soybean meal-based diets. J. Appl. Poult. Res. (2002). https://doi.org/10.1093/japr/11.1.29

    Article  Google Scholar 

  23. Babalola, T.O., Apata, D.F., Atteh, J.O.: Effect of β-xylanase supplementation of boiled castor seed meal based diets on the performance, nutrient absorbability and some blood constituents of pullet chicks. Trop. Sci. (2006). https://doi.org/10.1002/ts.181

    Article  Google Scholar 

  24. Puppala, K.R., Buddhiwant, P.G., Agawane, S.B., Kadam, A.S., Mote, C.S., Lonkar, V.D., Khire, J.M., Dharne, M.S.: Performance of Aspergillus niger (NCIM 563) phytase based feed supplement for broiler growth and phosphorus excretion. Biocatal. Agric. Biotechnol. (2021). https://doi.org/10.1016/j.bcab.2020.101887

    Article  Google Scholar 

  25. Lalpanmawia, H.L., Flangovan, A.V., Sridhar, M., Shet, M., Ajith, S., Pal, D.T.: Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim. Feed Sci. Technol. (2014). https://doi.org/10.1016/j.anifeedsci.2014.03.004

    Article  Google Scholar 

  26. Suresh, S., Sivaramakrishnan, R., Radha, K.V., Incharoensakdi, A., Pugazhendhi, A.: Ultrasound pretreated rice bran for Rhizopus sp. phytase production as a feed. Food Biosci. (2021). https://doi.org/10.1016/j.fbio.2021.101281

    Article  Google Scholar 

  27. Walk, C.L., Juntunen, K., Paloheimo, M., Ledoux, D.R.: Evaluation of novel protease enzymes on growth performance and nutrient digestibility of poultry: enzyme dose response. Poult. Sci. (2019). https://doi.org/10.3382/ps/pez299

    Article  PubMed  PubMed Central  Google Scholar 

  28. Novelli, P.K., Barros, M.M., Pezzato, L.E., Araujo, E.P., Botelho, R.M., Fleuri, L.F.: Enzymes produced by agro-industrial co-products enhance digestible values for Nile tilapia (Oreochromis niloticus): a significant animal feeding alternative. Aquaculture (2017). https://doi.org/10.1016/j.aquaculture.2017.08.010

    Article  Google Scholar 

  29. Sapna, Singh, B.: Purification and characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement. Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.077

    Article  PubMed  Google Scholar 

  30. Boer, C.G., Peralta, R.M.: Production of extracellular protease by Aspergillus tamarii. J. Basic Microbiol. (2000). https://doi.org/10.1002/(SICI)1521-4028(200005)40:2%3c75::AID-JOBM75%3e3.0.CO;2-X

    Article  Google Scholar 

  31. Veerabhadrappa, M.B., Shivakumar, S.B., Devappa, S.: Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J. Biosci. Bioeng. (2014). https://doi.org/10.1016/j.jbiosc.2013.07.003

    Article  PubMed  Google Scholar 

  32. Pereira, G.F., Bastiani, D., Gabardo, S., Squina, F., Ayub, M.A.Z.: Solid-state cultivation of recombinant Aspergillus nidulans to co-produce xylanase, arabinofuranosidase, and xylooligosaccharides from soybean fibre. Biocatal. Agric. Biotechnol. (2018). https://doi.org/10.1016/j.bcab.2018.05.012

    Article  Google Scholar 

  33. Ndou, S.P., Kiarie, E., Agyekum, A.K., Heo, J.M., Romero, J.M., Arent, S., Lorentsen, R., Nyachoti, C.M.: Comparative efficacy of xylanases on growth performance and digestibility in growing pigs fed wheat and wheat bran—or corn and corn DDGS-based diets supplemented with phytase. Animal Feed Sci. Technol. (2015). https://doi.org/10.1016/j.anifeedsci.2015.08.011

    Article  Google Scholar 

  34. Zhang, H., Sang, Q.: Production and extraction optimization of xylanase and β-mannanase by Penicillium chrysogenum QML2 and primary application in saccharification of corn cob. Biochem. Eng. J. (2015). https://doi.org/10.1016/j.bej.2015.02.014

    Article  Google Scholar 

  35. Liu, Y., Wang, J., Bao, C., Dong, B., Cao, Y.: Characterization of a novel GH110 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.065

    Article  PubMed  PubMed Central  Google Scholar 

  36. Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to food industry—a review. J. Food Eng. (2006). https://doi.org/10.1016/j.jfoodeng.2005.05.022

    Article  Google Scholar 

  37. Kanti, A., Sudiana, I.M.: Production of phytase, amylase and cellulase by Aspergillus, Rhizophus and Neurospora on mixed rice straw powder and soybean curd residue. Earth Environ. Sci. (2018). https://doi.org/10.1088/1755-1315/166/1/012010

    Article  Google Scholar 

  38. Khanna, P., Sundari, S.S., Kumar, N.J.: Production, isolation and partial purification of xylanase from an Aspergillus sp. World J. Microbiol. Biotechnol. (1995). https://doi.org/10.1007/BF00704661

    Article  PubMed  Google Scholar 

  39. Heinonen, J.K., Lahti, R.J.: A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. (1981). https://doi.org/10.1016/0003-2697(81)90082-8

    Article  PubMed  Google Scholar 

  40. Sarath, G., De La Motte, R.S., Wagner, F.W.: Protease assay methods. In: Beynon, R.J., Bond, J.S. (eds.) Proteolytic Enzymes a Practical Approach, pp. 25–55. Oxford University, New York (1989)

    Google Scholar 

  41. McIlvaine, T.C.: A buffer solution for colorimetric comparison. J. Biol. Chem. 49, 183–186 (1921)

    Article  CAS  Google Scholar 

  42. Miller, G.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  43. Lowry, H., Rosebrough, N.J., Farr, A.L., Randal, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 267–275 (1951)

    Article  Google Scholar 

  44. Ferreira, D.F.: Sisvar: a computer statistical analysis system. Ciênc. Agrotec. (2011). https://doi.org/10.1590/S1413-70542011000600001

    Article  Google Scholar 

  45. Zhao, L., Zhang, Y.: Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agric. (2015). https://doi.org/10.1016/S2095-3119(14)60966-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bueno, D., Brienzo, M.: Xylan solubilization and use as carbon source/inductor for microbial xylanase production. Braz. J. Dev. (2020). https://doi.org/10.34117/bjdv6n10-320

    Article  Google Scholar 

  47. Buenrostro-Figueroa, J., Ascacio-Valdés, A., Sepúlveda, L., De la Cruz, R., Prado-Barragán, A., Aguilar-González, M.A., Rodríguez, R.A., Cristóbal, N.: Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. (2014). https://doi.org/10.1016/j.fbp.2013.08.010

    Article  Google Scholar 

  48. Istiqomah, L., Cahyanto, M.N., Zuprizal,: Xylanase production by Trichoderma virens MLT2J2 under solid-state fermentation using corn cob as a substrate. J. Biol. Divers. (2022). https://doi.org/10.13057/biodiv/d231251

    Article  Google Scholar 

  49. Savitha, S., Sadhasivam, S., Swanminathan, K., Lin, F.H.: Fungal protease: production, purification and compatibility with laundry detergentes and their wash performance. J. Taiwan Inst. Chem. Eng. (2011). https://doi.org/10.1016/j.jtice.2010.05.012

    Article  Google Scholar 

  50. De Castro, R.J.S., Sato, H.H.: Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical-chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. (2013). https://doi.org/10.1016/j.bcab.2013.12.002

    Article  Google Scholar 

  51. Gautam, A., Kumar, A., Bharti, A.K., Dutt, B.: Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in prebleaching. J. Genet. Eng. Biotechnol. (2018). https://doi.org/10.1016/j.jgeb.2018.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tanruean, K., Penkhrue, W., Kulma, J., Suwannarach, N., Lumyong, S.: Valorization of lignocellulosic wastes to produce phytase and cellulolytic enzymes from a thermophilic fungus, Thermoascus aurantiacus SL16W, under semi-solid state fermentation. J. Fungi (2021). https://doi.org/10.3390/jof7040286

    Article  Google Scholar 

  53. Neira-Vielma, A.A., Aguilar, C.N., Ilyina, A., Contreras-Esquivel, J.C., Carneiro-Da-Cunha, M.G., Michelena-Álvarez, G., Martínez Hernández, J.L.: Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate. Biotechnol. Rep. (2017). https://doi.org/10.1016/j.btre.2017.12.004

    Article  Google Scholar 

  54. Rocha, F.T.B., Brandão-Costa, R.M.P., Neves, A.G.D., Cardoso, K.B.B., Nascimento, T.P., Albuquerque, W.W.C., Porto, A.L.F.: Purification and characterization of a protease from Aspergillus sydowii URM5774: coffee ground residue for protease production by solid state fermentation. An. Acad. Bras. Ciênc. (2021). https://doi.org/10.1590/0001-3765202120200867

    Article  PubMed  Google Scholar 

  55. Abaide, E.R., Tres, M.V., Zabot, G.L., Mazutti, M.A.: Reasons for processing of rice coproducts: reality and expectations. Biomass Bioenerg. (2019). https://doi.org/10.1016/j.biombioe.2018.11.032

    Article  Google Scholar 

  56. Aliyah, A., Alamsyah, G., Ramadhani, R., Hermansyah, H.: Production of α-Amylase and β-Glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia (2017). https://doi.org/10.1016/j.egypro.2017.10.269

    Article  Google Scholar 

  57. Razali, S.A., Rasit, N., Ooi, C.K.: Statistical analysis of xylanase production from solid state fermentation of rice husk associated fungus Aspergillus niger. Mater. Today (2021). https://doi.org/10.1016/j.matpr.2020.06.366

    Article  Google Scholar 

  58. Menezes, B.S., Rossi, D.M., Squina, F., Ayub, M.A.Z.: Comparative production of xylanase and the liberation of xylooligosaccharides from lignocellulosic biomass by Aspergillus brasiliensis BLf1 and recombinant Aspergillus nidulans XynC A773. Int. J. Food Sci. Technol. (2018). https://doi.org/10.1111/ijfs.13798

    Article  Google Scholar 

  59. Matrawy, A.A., Khalil, A.I., Marey, H.S., Embaby, A.M.: Biovalorization of the raw agro-industrial waste rice husk through directed production of xylanase by Thermomyces lanuginosus strain A3–1 DSM 105773: a statistical sequential model. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-020-00824-9

    Article  Google Scholar 

  60. Yomna, A.M., Elkhateeb, M.F.: Bioinformatic studies. Experimental validation of phytase production and optimization of fermentation conditions for enhancing phytase enzyme production by different microorganisms under solid-state fermentation. Open Microbiol. J. (2022). https://doi.org/10.2174/18742858-v16-e2202160

    Article  Google Scholar 

  61. Kumar, A.: Aspergillus nidulans: a potential resource of the production of the native and heterologous enzymes for industrial applications. Int. J. Microbiol. (2020). https://doi.org/10.1155/2020/8894215

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shivanna, G.B., Venkateswaran, G.: Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci. World J. (2014). https://doi.org/10.1155/2014/392615

    Article  Google Scholar 

  63. Kumari, N., Bansal, S.: Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed. Biotechnol. Lett. (2021). https://doi.org/10.1007/s10529-020-03069-8

    Article  PubMed  Google Scholar 

  64. Olopoda, I.A., Lawal, O.T., Omotoyinbo, O.V., Kolawole, A.N., Sanni, D.M.: Biochemical characterization of a thermally stable, acidophilic and surfactant-tolerant xylanase from Aspergillus awamori AFE1 and hydrolytic efficiency of its immobilized form. Process Biochem. (2022). https://doi.org/10.1016/j.procbio.2022.06.030

    Article  Google Scholar 

  65. Souza, J.B., Michelin, M., Amâncio, F.L.R., Brazil, O.A.V., Polizeli, M.L.T.M., Ruzene, D.S., Silva, D.P., Mendonça, M.C., López, J.A.: Sunflower stalk as a carbon source inductive for fungal xylanase production. Ind. Crops Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.112368

    Article  Google Scholar 

  66. Ezeilo, U.R., Wahab, R.A., Mahat, N.A.: Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2019.11.149

    Article  Google Scholar 

  67. Chimbekujwo, K.I., Ja’afaru, M.I., Adeyemo, O.M.: Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci. Afr. (2020). https://doi.org/10.1016/j.sciaf.2020.e00398

    Article  Google Scholar 

  68. De Castro, R.J.S., Ohara, A., Nishide, T.G., Bagagli, M.P., Dias, F.F.G., Sato, H.H.: A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatal. Agric. Biotechnol. (2015). https://doi.org/10.1016/j.bcab.2015.08.010

    Article  Google Scholar 

  69. Sun, Y., Qian, Y., Zhang, J., Wang, Y., Li, X., Zhang, W., Wang, L., Liu, H., Zhong, Y.: Extracellular protease production regulated by nitrogen and carbon sources in Trichoderma reesei. J. Basic Microbiol. (2021). https://doi.org/10.1002/jobm.202000566

    Article  PubMed  Google Scholar 

  70. Jatuwong, K., Kumla, J., Suwannarach, N., Matsui, K., Lumyong, S.: Bioprocessing of agricultural residues as substrates and optimal conditions for phytase production of chestnut mushroom, Pholiota adiposa, in solid state fermentation. J. Fungi (2020). https://doi.org/10.3390/jof6040384

    Article  Google Scholar 

  71. Zhang, G.Q., Dong, X.F., Wang, Z.H., Zhang, Q., Wang, H.X., Tong, J.M.: Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.01.001

    Article  PubMed  Google Scholar 

  72. Intasit, R., Cheirsilp, B., Suyotha, W., Boonsawang, P.: Purification and characterization of a highly-stable fungal xylanase from Aspergillus tubingensis cultivated on palm wastes through combined solid-state and submerged fermentation. Prep. Biochem. Biotechnol. (2022). https://doi.org/10.1080/10826068.2021.1941105

    Article  PubMed  Google Scholar 

  73. Carvalho, E.A., Nunes, L.V., Goes, L.M.S., Silva, E.G.P., Franco, M., Gross, E., Uetanabaro, A.P.T., Costa, A.M.: Peach-palm (Bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem. Eng. Commun. (2018). https://doi.org/10.1080/00986445.2018.1425208

    Article  Google Scholar 

  74. de Carvalho, M.S., de Menezes, L.H.S., Pimentel, A.B., et al.: Application of chemometric methods for the optimization secretion of xylanase by Aspergillus oryzae in solid state fermentation and its application in the saccharification of agro-industrial waste. Waste Biomass Valor (2022). https://doi.org/10.1007/s12649-022-01832-8

    Article  Google Scholar 

  75. El-Khonezy, M.I., Elgammal, E.W., Eman, E.F.A., Abd-Elaziz, A.M.: Detergent stable thiol-dependant alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: purification and kinetics. Biocatal. Agric. Biotechnol. (2021). https://doi.org/10.1016/j.bcab.2021.102046

    Article  Google Scholar 

  76. Shirasaka, N., Naitou, M., Okamura, K., Fukuta, Y., Terashita, T., Kusuda, M.: Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience (2012). https://doi.org/10.1007/S10267-011-0179-3

    Article  Google Scholar 

  77. Abu-Tahon, M.A., Arafat, H.H., Isaac, G.S.: Laundry detergent compatibility and dehairing efficiency of alkaline thermostable protease produced from Aspergillus terreus under solid-state fermentation. J. Oleo Sci. (2020). https://doi.org/10.5650/jos.ess19315

    Article  PubMed  Google Scholar 

  78. Amaral, Y.M.S., Silva, O.S., Oliveira, R.L., Porto, T.S.: Production, extraction, and thermodynamics protease partitioning from Aspergillus tamarii Kita UCP1279 using PEG/sodium citrate aqueous two-phase systems. Prep. Biochem. Biotechnol. (2020). https://doi.org/10.1080/10826068.2020.1721535

    Article  PubMed  Google Scholar 

  79. Gaind, S., Singh, S.: Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int. Biodeterior. Biodegradation (2015). https://doi.org/10.1016/j.ibiod.2014.12.013

    Article  Google Scholar 

  80. Sanni, D.M., Lawal, O.T., Enujjugha, V.N.: Purification and characterization of phytase from Aspergillus fumigatus isolated from african giant snail (Achatina fulica). Biocatal. Agric. Biotechnol. (2018). https://doi.org/10.1016/j.bcab.2018.11.017

    Article  Google Scholar 

  81. Onibokun, E.A., Eni, A.O., Oranusi, S.U.: Purification and characterization of phytase from a local poultry isolate of Aspergillus flavus MT899184. In: Ayeni, A.O., Sanni, S.E., Oranusi, S.U. (eds.) Bioenergy and Biochemical Processing Technologies. Green Energy and Technology, pp. 99–112. Springer, Cham (2022)

    Chapter  Google Scholar 

  82. Ornela, P.H.O., Guimarães, L.H.S.: Purification and characterization of an alkali stable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem (2019). https://doi.org/10.1016/j.procbio.2019.03.015

    Article  Google Scholar 

  83. Ao, X., Yu, X., Wu, D., Li, C., Zhang, T., Liu, S., Chen, S., He, L., Zhou, K., Zou, L.: Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express (2018). https://doi.org/10.1186/s13568-018-0611-6

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ding, C., Li, M., Hu, Y.: High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.128

    Article  PubMed  Google Scholar 

  85. Pal, A., Khanun, F.: Purification of xylanase from Aspergillus niger DFR-5: individual and interactive effect of temperature and pH on its stability. Process Biochem. (2011). https://doi.org/10.1016/j.procbio.2010.12.009

    Article  Google Scholar 

  86. Valle-Pérez, A.U., Flores-Cosío, G., Amaya-Delgado, L.: Bioconversion of agave bagasse to produce cellulases and xylanases by Penicillium citrinum and Aspergillus fumigatus in solid-state fermentation. Waste Biomass. Valor. (2021). https://doi.org/10.1007/s12649-021-01397-y

    Article  Google Scholar 

  87. Ojha, B.K., Singh, P.K., Shrivastava, N.: Enzymes in the animal feed industry. In: Kuddus, M. (ed.) Enzymes in Food Biotechnology, pp. 93–109. Academic Press, Cambridge (2019)

    Chapter  Google Scholar 

  88. Velázquez-De Lucio, B.S., Hernández-Domínguez, E.M., Villa-García, M., Díaz-Godínez, G., Mandujano-Gonzalez, V., Mendoza-Mendoza, B., Álvarez-Cervantes, J.: Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts (2021). https://doi.org/10.3390/catal11070851

    Article  Google Scholar 

  89. Monteiro, P.S., Melo, R.R., Tavares, M.P., Falkoski, D.L., Guimarães, V.M., Pereira, O.L., Rezende, S.T.: Production optimization, characterization and evaluation of Rhizopus stolonifer phytase in the hydrolysis of phytate in animal feed. R. Bras. Agrociência. Pelotas. 18, 117–132 (2012)

    Google Scholar 

  90. Vats, P., Bhushan, B., Banerjee, U.C.: Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Teighem. Biores. Technol. (2009). https://doi.org/10.1016/j.biortech.2008.06.021

    Article  Google Scholar 

  91. Dayiha, S., Kumar, A., Singh, B.: Enhanced endoxylanase production by Myceliophthora thermophila using rice straw and its synergism with phytase in improving nutrition. Process Biochem. (2020). https://doi.org/10.1007/s13205-019-1750-4

    Article  Google Scholar 

  92. Costa, A.C., Cavalheiro, G.F., Vieira, E.R.Q., Gandra, J.R., Goes, R.H.T.B., Paz, M.F., Fonseca, G.G., Leite, R.S.R.: Catalytic properties of xylanases produced by Trichoderma piluliferum and Trichoderma viride and their application as additives in bovine feeding. Biocatal. Agric. Biotechnol. (2019). https://doi.org/10.1016/j.bcab.2019.101161

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of Master's Dissertation of Simas, ALO (Laboratory of Biochemistry and Microorganisms/Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil).

Funding

This paper was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq Grant. 563823/2010-0 and 407732/2013-6, Brazil] Coordenação de Aperfeiçoamento de Pessoal de Nıvel Superior (CAPES) and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (Fundect). This study was financed in part by the Fundação Universidade Federal de Mato Grosso do Sul—UFMS/MEC—Brazil.

Author information

Authors and Affiliations

Authors

Contributions

ALOS, NCAG, NNG, JSST: investigation, methodology, experimental work, conceptualization, editing; RMSG, statistical analysis; CK, KMRSN, FFZ, DCM and, GCG supervision, writing and editing.

Corresponding author

Correspondence to Giovana Cristina Giannesi.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Consent to participate

The authors express their consent to cooperate in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Simas, A.L., de Alencar Guimarães, N.C., Glienke, N.N. et al. Production of Phytase, Protease and Xylanase by Aspergillus niveus with Rice Husk as a Carbon Source and Application of the Enzymes in Animal Feed. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02455-x

Keywords

Navigation