Skip to main content

Advertisement

Log in

Effect of Multipass FSP and (SiC + TiB2) Nanoparticles on the Mechanical and Metallurgical Characteristic of the Hybrid Metal Matrix Composite

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, a defect-free AA7050 (TiB2 + SiC) hybrid surface composites was fabricated using multipass friction stir processing (MPFSP). The metallurgical characterization of the MPFSP/(SiC + TiB2)/AA7050 was analyzed by optical and scanning electron microscopes (SEM), and mechanical properties including tensile strength and microhardness were evaluated. All hybrid aluminum metal composite (AMC) had higher tensile strength and hardness values compared to the AA7050. Nanoparticles and FSP passes were able to break the coarse and elongated dendrite structure of the AA7050 and generated a homogenous and fine-grain structure in the stir zone (SZ). Among the different hybrid AMCs, the 4P FSP (25% TiB2 + 75% SiC)/AA7050 composite exhibited the optimal dispersion of nanoparticles with a maximum tensile strength of 561 ± 7 MPa. The maximum hardness value of 4Pass FSP (25% TiB2, 75% SiC)/AA7050 at the SZ was 179 HV, whereas the minimum microhardness value (161 HV) was perceived for 4P FSP (100% TiB2)/AA7050. The maximum joint efficiency of 132.30% was perceived in 4P FSP (25% TiB2, 75% SiC)/AA7050, while minimum joint efficiency of 111.39% was perceived in the 4P FSP (100% TiB2)/AA7050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All the data and information mentioned in this article are related to this research.

References

  1. Varol T, Canakci A, Ozsahin S (2015) Modeling of the prediction of densification behavior of powder metallurgy Al-Cu-Mg/B4C composites using artificial neural networks. Acta Metall Sin 28:182–195

    Article  CAS  Google Scholar 

  2. Hashmi AW, Mehdi H, Mishra RS, Mohapatra P, Kant N, Kumar R (2022) Mechanical Properties and Microstructure Evolution of AA6082/Sic Nanocomposite Processed by Multi-Pass FSP. Trans Indian Inst Met 75(8):2077–2090. https://doi.org/10.1007/s12666-022-02582-w

    Article  CAS  Google Scholar 

  3. Suryanarayana C (2013) NasserAl-Aqeeli, Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502

    Article  CAS  Google Scholar 

  4. Liao H et al (2021) Hybrid reinforced aluminum matrix composites fabricated by selective laser melting. Intermetallic 131:107080

    Article  CAS  Google Scholar 

  5. Rani P, Mishra RS, Mehdi H (2022) Effect of Nano-sized Al2O3 particles on microstructure and mechanical properties of aluminum matrix composite fabricated by multipass FSW. Part C: J Mech Eng Sci (SAGE) https://doi.org/10.1177/09544062221110822.

  6. Mehdi H, Mishra RS (2022) Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. J Adhes Sci Technol 36(12):1279–1298. https://doi.org/10.1080/01694243.2021.1964846

    Article  CAS  Google Scholar 

  7. Yi J et al (2021) In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2 + TiC)/AlSi10Mg composites prepared by SLM- CS processing. J Alloys Compd 857:157553

    Article  CAS  Google Scholar 

  8. Suryanarayana C, Ivanov E (2013) 3 - Mechanochemical synthesis of nanocrystalline metal powders. In: Chang I, Zhao Y (eds) Advances in Powder Metallurgy. Woodhead Publishing, pp 42–68

    Chapter  Google Scholar 

  9. Lieberthal M, Kaplan WD (2001) Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4. Mater Sci Eng A 302:83–91

    Article  Google Scholar 

  10. Sajjadi SA, Ezatpour HR, Beygi H (2011) Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A 528:8765–8771

    Article  CAS  Google Scholar 

  11. AbuShanab WS, Abd Elaziz M, Ghandourah EI, Moustafa EB, Elsheikh AH (2021) A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials. J Mater Res Technol 14:1482–1493

    Article  CAS  Google Scholar 

  12. Abushanab WS, Moustafa EB, Melaibari AA, Kotov AD, Mosleh AO (2021) A novel comparative study based on the economic feasibility of the ceramic nanoparticles role’s in improving the properties of the AA5250 nanocomposites. Coatings 11:977

    Article  CAS  Google Scholar 

  13. Buha J, Lumley RN, Crosky AG (2008) Secondary ageing in an aluminium alloy 7050. Mater Sci Eng A 492(1):1–10

    Article  Google Scholar 

  14. Jacumasso SC, Martins JDP, Carvalho ALMD (2016) Analysis of precipitate density of an aluminium alloy by TEM and AFM. Int Eng J 69(4):451–457

    Google Scholar 

  15. Mabuwa S, Msomi V, Mehdi H, Saxena KK (2022) Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J Adhes Sci Technol 37(17):2484–2502. https://doi.org/10.1080/01694243.2022.2142366

    Article  CAS  Google Scholar 

  16. Zhang X, Liu W, Liu SD, Deng YL (2009) 7050 aluminum alloy TTP curve. Chin J Nonferr Met 19(5):861–868

    CAS  Google Scholar 

  17. Komarasamy M, Alagarsamy K, Mishra RS, Ely L (2018) Characterization of 300 through thickness friction stir welded 7050–T7451 Al alloy. Mater Sci Eng A 716:55–62

    Article  CAS  Google Scholar 

  18. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(50):1–78

    Article  Google Scholar 

  19. Mehdi H, Mishra RS (2022) Modification of Microstructure and Mechanical Properties of AA6082/ZrB2 Processed by Multipass Friction Stir Processing. J Mater Eng Perform 32(1):285–295. https://doi.org/10.1007/s11665-022-07080-0

    Article  CAS  Google Scholar 

  20. Mehta KM, Badheka VJ (2019) Wear behavior of boron-carbide reinforced aluminum surface composites fabricated by Friction Stir Processing. Wear 426–427:975–980

    Article  Google Scholar 

  21. Mehdi H, Mishra RS (2021) Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv Ind Manuf Eng 3:100062. https://doi.org/10.1016/j.aime.2021.100062

    Article  Google Scholar 

  22. Tonelli L, Morri A, Toschi S, Shaaban M, Ammar HR, Ahmed MMZ, Ramadan RM, El-Mahallawi I, Ceschini L (2019) Effect of FSP parameters and tool geometry on microstructure, hardness, and wear properties of AA7075 with and without reinforcing B 2 C ceramic particles. Int J Adv Manuf Technol 102:3945–3961

    Article  Google Scholar 

  23. Bisadi H, Abasi A (2011) Fabrication of Al7075/TiB2 Surface Composite via Friction Stir Processing. A J M Sci 2:67–70

    Google Scholar 

  24. Dwarakesh S, Puviyarasan M (2019) Experimental investigations on microstructure and mechanical properties of AA7075/SrCo3 composites fabricated using friction stir processing. Mater Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.07.723

    Article  Google Scholar 

  25. Bamane O, Patil S, Agarwal L, Kuppan P (2018) Fabrication and characterization of AA7075 metal matrix composite reinforced with MWCNT. Mater Today: Proceedings 5:8001–8007

    CAS  Google Scholar 

  26. Ahmadifarda S, Momenib A, Bahmanzadehb S, Kazemi S (2018) Microstructure, tribological and mechanical properties of Al7075 / Ti 3 AlC MAX-phase surface composite produced by friction stir processing. Vacuum 155:134–141

    Article  Google Scholar 

  27. Kumar S, Kumar A, Vanitha C (2019) Corrosion behaviour of Al 7075 /TiC composites processed through friction stir processing. Mater Today: Proceedings 15:21–29

    CAS  Google Scholar 

  28. Patle H, Mahendiran P, Sunil BR, Dumpala R (2019) Hardness and sliding wear characteristics of AA7075-T6 surface composites reinforced with B 4 4 SiC C and MoS particles. Mater Res Express 6:086589. https://doi.org/10.1088/2053-1591/ab1ff4

    Article  CAS  Google Scholar 

  29. Sharma A, Narsimhachary D, Sharma VM, Sahoo B, Paul J (2019) Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: A tribological study. Surf Coat Technol 368:175–191

    Article  CAS  Google Scholar 

  30. Ande R, Gulati P, Shukla DK, Dhingra H (2019) microstructural and wear characteristics of friction stir processed Al7075/SiC reinforced aluminium composite. Mater Today: Proceedings 18:4092–4101

    CAS  Google Scholar 

  31. Gangil N, Maheshwari S, Siddiquee AN (2018) Novel Use of Distribution Facilitators and Time-Temperature Range for Strengthening in Surface Composites on AA7050-T7451. Metallogr Microstruct Anal 7:561–577. https://doi.org/10.1007/s13632-018-0474-x

    Article  CAS  Google Scholar 

  32. Ma Y, Chen Z, Wang M, Chen D, Ma N, Wanga H (2015) High cycle fatigue behavior of the in-situ TiB2/7050 composite. Mater Sci Eng: A 640:350–356

    Article  CAS  Google Scholar 

  33. Sharma DK, Patel V, Badheka V, Mehta K, Upadhyay G (2019) Fabrication of Hybrid Surface Composites AA6061/(B4C+MoS2) via Friction Stir Processing. ASME J Tribol 141(5):052201

    Article  CAS  Google Scholar 

  34. Sharma DK, Patel V, Badheka V, Mehta K, Upadhyay G (2020) Different reinforcement strategies of hybrid surface composite AA6061/(B4C+ MoS2) produced by friction stir processing. Mater Sci Eng Technol 51(11):1493–1506

    CAS  Google Scholar 

  35. Sharma DK, Badheka V, Patel V, Upadhyay G (2021) Recent Developments in Hybrid Surface Metal Matrix Composites Produced by Friction Stir Processing: A Review. ASME J Tribol 143(5):050801

    Article  CAS  Google Scholar 

  36. Akbari M, Khalkhali A, Keshavarz SME, Sarikhani E (2015) Investigation of the effect of friction stir processing parameters on temperature and forces of Al–Si aluminum alloys. Proc IMechE Part L: J Mater Des Appl 232(3):213–229

    Google Scholar 

  37. Akbari M, Asadi P (2021) Effects of different cooling conditions on friction stir processing of A356 alloy: Numerical modeling and experiment. Proc Inst Mech Eng C J Mech Eng Sci 236(8):4133–4146

    Article  Google Scholar 

  38. Akbari M, Asadi P, Asiabaraki HR (2022) Investigation of Wear and Microstructural Properties of A356/ TiC Composites Fabricated by FSP. Surf Rev Lett 29(10):2250130

    Article  CAS  Google Scholar 

  39. Akbari M, Asadi P, Aliha MRM, Berto F (2023) Modeling and optimization of process parameters of the piston alloy-based composite produced by FSP using response surface methodology. Surf Rev Lett 30(6):2350041

    Article  CAS  Google Scholar 

  40. Akbari M, Aliha MRM, Berto F (2023) Investigating the role of different components of friction stir welding tools on the generated heat and strain. Forces in Mechanics 10:100166

    Article  Google Scholar 

  41. Hashmi AW, Mehdi H, Mabuwa S et al (2022) Influence of FSP Parameters on Wear and Microstructural Characterization of Dissimilar TIG Welded Joints with Si-rich Filler Metal. SILICON 14:11131–11145. https://doi.org/10.1007/s12633-022-01848-8

    Article  CAS  Google Scholar 

  42. Salah AN, Mabuwa S, Mehdi H et al (2022) Effect of Multipass FSP on Si-rich TIG Welded Joint of Dissimilar Aluminum Alloys AA8011-H14 and AA5083-H321: EBSD and Microstructural Evolutions. SILICON 14:9925–9941. https://doi.org/10.1007/s12633-022-01717-4

    Article  CAS  Google Scholar 

  43. Adel Mahmood Hassan (2012) Tarek Qasim & Ahmed Ghaithan, Effect of Pin Profile on Friction Stir Welded Aluminum Matrix Composites. Mater Manuf Processes 27(12):1397–1401. https://doi.org/10.1080/10426914.2012.663238

    Article  CAS  Google Scholar 

  44. Ali LF, Kuppuswamy N, Soundararajan R, Ramkumar KR, Sivasankaran S (2021) Microstructural evolutions and mechanical properties enhancement of AA 6063 alloy reinforced with Tungsten (W) nanoparticles processed by friction stir processing. Mater Charact 172:110903. https://doi.org/10.1016/j.matchar.2021.110903

    Article  CAS  Google Scholar 

  45. Lombard H, Hattingh DG, Steuwer A et al (2008) Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083–H321 aluminium alloy. Eng Fract Mech 75(3–4):341–354

    Article  Google Scholar 

  46. Rahmatian B, Mirsalehi SE, Dehghani K (2019) Metallurgical and mechanical characterization of double-sided friction stir welded thick AA5083 aluminum alloy joints. Trans Indian Inst Met 72:2739–2751

    Article  CAS  Google Scholar 

  47. Kim YG, Fujii H, Tsumura T et al (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A 415(1–2):250–254

    Article  Google Scholar 

  48. Guo Y et al (2018) An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy. Int J Adv Manuf Technol 98(5–8):14331440

    Google Scholar 

  49. Wang J, Zhou D, Xie L, Li X, Lu Y, Bai Z, Zhou J (2021) Efect of multi-pass friction stir processing on microstructures and mechanical behaviors of as-cast 2A14 aluminum alloy. J Mater Eng Perform 30:3033–3043

    Article  CAS  Google Scholar 

  50. Chen Y, Ding H, Cai Z, Zhao J, Li J (2016) Efect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy Mater. Sci Eng A 650:396–403

    Article  CAS  Google Scholar 

  51. Wang J, Yang K, Zhou D, Xie L, Lu Y, Li X (2021) Investigation on the microstructures and mechanical properties of friction stir processed 2A14 aluminum alloy fabricated by diferent initial precipitation states, The Int. J Adv Manuf Technol 116:3549–3560

    Article  Google Scholar 

  52. He XC, Gu FS, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66

    Article  Google Scholar 

  53. Jain S, Mishra RS (2021) Effect of Al2O3 nanoparticles on microstructure and mechanical properties of friction stir-welded dissimilar aluminum alloys AA7075-T6 and AA6061-T6. Proc Inst Mech Eng Part E: J Process Mech Eng 236(4):1511–1521

    Article  Google Scholar 

  54. Jamalian HM, Ramezani H, Ghobadi H, Ansari M, Yari S, Givi MKB (2016) Processing–structure–property correlation in Nano-SiC-reinforced friction stir welded aluminum joints. J Manuf Process 21:180–189

    Article  Google Scholar 

  55. Asadi P, Faraji G, Besharati Givi MK (2010) Producing of AZ91/SiC composite by Friction stir processing (FSP). Int J Adv Manuf Technol 51:247–260

    Article  Google Scholar 

  56. Mehdi H, Mishra RS (2020) Influence of Friction Stir Processing on Weld Temperature Distribution and Mechanical Properties of TIG-Welded Joint of AA6061 and AA7075. Trans Indian Inst Met 73:1773–1788. https://doi.org/10.1007/s12666-020-01994-w

    Article  CAS  Google Scholar 

  57. Akbari MK et al (2017) Al-TiB2 micro/nanocomposites: particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater Sci Eng: A 682:98–106

    Article  CAS  Google Scholar 

  58. Rahmani K, Majzoobi G, Atrian A (2018) A novel approach for dynamic compaction of Mg–SiC nanocomposite powder using a modified Split Hopkinson Pressure Bar. Powder Metall 61:164–177

    Article  CAS  Google Scholar 

  59. Srivastava M, Rathee S, Siddiquee AN (2019) Investigation on the effects of silicon carbide and cooling medium during multi-pass FSP of Al-Mg/SiC surface composites. Silicon india 11:2149–2157

    Article  CAS  Google Scholar 

  60. Liu Y et al (2012) Microstructure and mechanical properties of aluminum 5083weldments by gas tungsten arc and gas metal arc welding. Mater Sci Eng A 549:7–13

    Article  CAS  Google Scholar 

  61. Barmouz M, Givi MKB (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Compos A Appl Sci Manuf 42(10):1445–1453

    Article  Google Scholar 

  62. McLean AA, Powell GLF, Brown IH, Linton VM (2003) Friction stir welding of magnesium alloy AZ31B to aluminium alloy 5083. Sci Technol Weld Joining 8(6):462–464

    Article  Google Scholar 

  63. Ralls AM, Kasar AK, Menezes PL (2021) Friction Stir Processing on the Tribological, Corrosion, and Erosion Properties of Steel: A Review. Manuf Mater Process 5(3):97. https://doi.org/10.3390/jmmp5030097

    Article  CAS  Google Scholar 

  64. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater 51:509–514

    Article  CAS  Google Scholar 

  65. Oladijo OP, Venter AM, Cornish LA, Sacks N (2012) X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surf Coat Techno 206:4725–4729

    Article  CAS  Google Scholar 

  66. Paidar M (2019) Olatunji Oladimeji Ojo, Hamid Reza Ezatpour, Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol 361:159–169

    Article  CAS  Google Scholar 

  67. Tariq M, Khan I, Hussain G, Farooq U (2019) Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. Int J Light Mater Manuf 2(2):123–130

    Google Scholar 

  68. Patel VV, Badheka V, Kumar A (2017) Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J Mater Process Technol 240:68–76

    Article  CAS  Google Scholar 

  69. Qin H, Zhang H, Wu H (2015) The evolution of precipitation and microstructure in friction stir welded 2195–T8 Al–Li alloy. Mater Sci Eng A 626:322–329

    Article  CAS  Google Scholar 

  70. Butola R (2020) Murtaza, Qasim, Singari, Ranganath M, Formation of Self-Assembled Monolayer and Characterization of AA7075-T6/B4C Nano-ceramic surface composite using Friction Stir Processing. Surf Topogr Metrol Prop 8(2):025030

    Article  CAS  Google Scholar 

  71. Deore HA, Bhardwaj A, Rao AG, Mishra J, Hiwarkar VD (2020) Consequence of reinforced SiC particles and post process artificial ageing on microstructure and mechanical properties of friction stir processed AA7075. Def Technol 16:1039–1050

    Article  Google Scholar 

  72. Karakizis PN, Pantelis DI, Fourlaris G et al (2018) Effect of SiC and TiC nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of AA6082-T6 friction stir welds. Int J Adv Manuf Technol 95:3823–3837. https://doi.org/10.1007/s00170-017-1446-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Bharat Singh Chittoriya: Writing and reviewing of article.

Arvind Jayant, and Rakesh Kumar: Drafting and reviewing.

Corresponding author

Correspondence to Bharat Singh Chittoriya.

Ethics declarations

Informed Consent

Not applicable.

Consent for Publication

No objection.

Consent to Participate

No objection.

Conflict of Interest

No.

Competing Interests

No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chittoriya, B.S., Jayant, A. & Kumar, R. Effect of Multipass FSP and (SiC + TiB2) Nanoparticles on the Mechanical and Metallurgical Characteristic of the Hybrid Metal Matrix Composite. Silicon 15, 7927–7941 (2023). https://doi.org/10.1007/s12633-023-02635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02635-9

Keywords

Navigation