Skip to main content

Advertisement

Log in

Effect of Multipass FSP on Si-rich TIG Welded Joint of Dissimilar Aluminum Alloys AA8011-H14 and AA5083-H321: EBSD and Microstructural Evolutions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2022

This article has been updated

Abstract

In this analysis, friction stir processing (FSP) was applied to the Si rich TIG welded joint to study the influence of multi-pass FSP (MPFSP) on microstructure, hardness and tensile properties. The TIG welding defects (coarse grain structure, porosity, microvoids, and solidification cracking) were eliminated, and the grain size of the TIG welded joint was decreased. As the FSP passes increases, the coarse eutectic Mg2Si and Al13Fe4 phases are converted into small phases. The coarse and elongated dendrite structure of the TIG welded joint was decreased after one FSP pass. The homogenization or modification of the primary α-Al exists in the TIG weldment was continuously improved as the TIG + FSP pass increased. The SZ of TIG + 3 pass FSP showed ultrafine grains of 3.42 µm compared to other welded specimens. The average ultimate tensile strength (UTS) of the TIG welded joint with filler ER4043 was observed to be 79.82 MPa, whereas the UTS of TIG + 1 pass FSP, TIG + 2 pass FSP, and TIG + 3 pass FSP was 97.87 MPa, 120.36 MPa, and 126.92 MPa respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A 341(1–2):307–310

    Article  Google Scholar 

  2. Husain M, Mishra RS (2021) Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv Ind Manuf Eng 3:100062. https://doi.org/10.1016/j.aime.2021.100062

  3. Husain Mehdi, R.S. Mishra, Study of the influence of friction stir processing on tungsten inert gas welding of different aluminum alloy. SN Appl. Sci. 1, 712 (2019). https://doi.org/10.1007/s42452-019-0712-00.

  4. Fayomi J, Popoola API, Popoola OM, Fayomi OSI, Ajenifuja E (2021) Response evaluation of AA8011 with nano ZrB2 inclusion for multifunctional applications: Considering its thermal, electrical, and corrosion properties. Journal of Alloys and Compounds 853:157197

    Article  CAS  Google Scholar 

  5. Huang Chuanjun, Zhixiong Wu, Huang Rongjin, Wang Wei, Li Laifeng (2017) Mechanical properties of AA5083 in different tempers at low temperatures. IOP Conf. Series: Materials Science and Engineering 279:012002

    Article  Google Scholar 

  6. Saini N, Pandey C (2018) Dheerendra Kumar Dwivedi, Ductilizing of cast hypereutectic Al–17%Si alloy by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 232(6):696–701

    Article  CAS  Google Scholar 

  7. Saini N, Pandey C, Thapliyal S et al (2018) Mechanical Properties and Wear Behavior of Zn and MoS2 Reinforced Surface Composite Al- Si Alloys Using Friction Stir Processing. SILICON 10:1979–1990

    Article  CAS  Google Scholar 

  8. Deepan M, Pandey C, Saini N et al (2017) Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP route. J Braz Soc Mech Sci Eng 39:4613–4622

    Article  CAS  Google Scholar 

  9. Fayomi J, Popoola API, Popoola OM, Oladijo OP, Fayomi OSI (2019) Tribological and microstructural investigation of hybrid AA8011/ZrB2-Si3N4 nanomaterials for service life improvement. Results Phys. 14:102469

    Article  Google Scholar 

  10. Li Quan Wu, Ai-ping Zhao Yue, Guo-qing Wang, Dong-yang Yan, Hui-qiang Wu (2015) Fracture behavior of double-pass TIG welded 2219–T8 aluminum alloy joints under transverse tensile test [J]. Transactions of Nonferrous Metals Society of China 25(6):1794–1803

    Article  Google Scholar 

  11. Takhti S, Reihanian M, Ashrafi A (2015) Microstructure characterization and mechanical properties of gas tungsten arc welded cast A356 alloy. Trans Nonferrous Met Soc China 25(7):2137–2146. https://doi.org/10.1016/S1003-6326(15)63825-0

    Article  CAS  Google Scholar 

  12. Chen YB, Lei ZL, Li LQ, Wu L (2006) Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci Technol Weld Joining 11(4):403–411

    Article  CAS  Google Scholar 

  13. Song G, Luo Z (2011) the influence of laser pulse waveform on laser–TIG hybrid welding of AZ31B magnesium alloy. Opt Lasers Eng 49(1):82–88

    Article  Google Scholar 

  14. A. El-Batahgy and M. Kutsuna, “Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys, Advances in Materials Science and Engineering, 2009, 1–9. https://doi.org/10.1155/2009/974182.

  15. Verma Rajesh P, Pandey KN, Sharma Yogesh (2015) Effect of ER4043 and ER5356 filler wire on mechanical properties and microstructure of dissimilar aluminium alloys, 5083-O and 6061–T6 joint, welded by the metal inert gas welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229(6):1021–1028

    Article  CAS  Google Scholar 

  16. Elanchezhian C, VijayaRamnath B, Venkatesan P, Sathish S, Vignesh T, Siddharth RV, Vinay B, Gopinath K (2014) Parameter Optimization of Friction Stir Welding of AA8011–6062. Procedia Engineering 97:775–782

    Article  CAS  Google Scholar 

  17. Mehdi Husain, Mishra RS (2021) Microstructure and mechanical characterization of TIG-welded joint of AA6061 and AA7075 by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235(11):2531–2546

  18. Mehdi Husain, Mishra RS (2020) Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG welded joint of AA6061 and AA7075. Transactions of the Indian Institute of Metals 73:1773–1788

    Article  CAS  Google Scholar 

  19. Mehdi Husain, Mishra RS (2020) Effect of Friction Stir Processing on Microstructure and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075. Metallography, Microstructure, and Analysis 9:403–418

    Article  CAS  Google Scholar 

  20. Mehdi Husain, Mishra RS (2020) Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG+FSP welding approach. Journal of Advanced Joining Processes 1:100003

    Article  Google Scholar 

  21. Takhti S, Reihanian M, Ashrafi A (2015) Microstructure characterization and mechanical properties of gas tungsten arc welded cast A356 alloy. Trans Nonferrous Met Soc China 25:2137–2146

    Article  CAS  Google Scholar 

  22. Chen Y-B, Miao Y-G, Li L-Q, Lin Wu (2009) Joint performance of laser-TIG double-side welded 5A06 aluminum alloy. Transactions of Nonferrous Metals Society of China 19(1):26–31

    Article  Google Scholar 

  23. Chen Y-B, Miao Y-G, Li L-Q, Lin Wu (2008) Arc characteristics of laser-TIG double-side welding. Sci Technol Weld Joining 13(5):438–444

    Article  Google Scholar 

  24. Shen J, Xu N (2012) Effect of preheat on TIG welding of AZ61 magnesium alloy. Int J Miner Metall Mater 19:360–363

    Article  CAS  Google Scholar 

  25. Ramana Venkat, Yelamasetti Balram, Vardhan Vishnu (2021) Study on weldability and effect of post heat treatment on mechanical and metallurgical properties of dissimilar AA 2025, AA 5083 and AA7075 GTAW weld joints. Materials today proceedings 46(1):878–882

    Article  Google Scholar 

  26. Husain Mehdi RS (2021) Mishra, Effect of Friction Stir Processing on Mechanical Properties and Wear Resistance of Tungsten Inert Gas Welded Joint of Dissimilar Aluminum Alloys. Journal of Material Engineering and Performance 30:1926–1937

    Article  Google Scholar 

  27. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater 51:713–729

    Article  CAS  Google Scholar 

  28. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction stir butt welding. International Patent Application No. PCT/GB92/02203; 1991. G.B. Patent Application No. 9125978.8

  29. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78

    Article  Google Scholar 

  30. A Nait Salah, Husain Mehdi, Arshad Mehmood, Abdul Wahab Hashmi, Chandrabhanu Malla, Ravi Kumar, Optimization of process parameters of friction stir welded joints of dissimilar aluminum alloys AA3003 and AA6061 by RSM, materials today proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.10.288.

  31. Sadoun AM, Wagih A, Fathy A, Essa ARS (2019) Effect of tool pin side area ratio on temperature distribution in friction stir welding. Results in Physics 15:102814

    Article  Google Scholar 

  32. Mastanaiah P (2016) Abhay Sharma G, Madhusudhan Reddy, Dissimilar Friction Stir Welds in AA2219-AA5083 AluminiumAlloys: Effect of Process Parameters on Material Inter-Mixing. Defect Formation, and Mechanical Properties, Trans Indian Inst Met 69(7):1397–1415

    Article  CAS  Google Scholar 

  33. Taban E, Kaluc E (2006) Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083–H321 aluminium alloy. Kovove Mater 44:25–33

    CAS  Google Scholar 

  34. Mabuwa S, Msomi V (2020) The impact of submerged friction stir processing on the friction stir welded dissimilar joints. Mater. Res. Express 7:096513

    Article  CAS  Google Scholar 

  35. Singh D, Rao PN, Jayaganthan R (2013) Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al – Mg Alloys Processed by Rolling. Mater Des 50:646–655

    Article  CAS  Google Scholar 

  36. Lee YB, Shin DH, Park KT, Nam WJ (2004) Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature. Scr Mater 51(4):355–359

    Article  CAS  Google Scholar 

  37. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39:642–658. https://doi.org/10.1007/s11661-007-9459-0

    Article  CAS  Google Scholar 

  38. Su JQ, Nelson TW, Sterling CJ (2006) Grain Refinement of Aluminum Alloys by Friction Stir Processing. Philos Mag 86(1):1–24

    Article  CAS  Google Scholar 

  39. Rastkerdar E, Shamanian M, Saatchi A (2013) Taguchi optimization of pulsed currentGTA welding parameters for improved corrosion resistance of 5083 aluminumwelds. J Mater Eng Perform 22(4):1149–1160

    Article  CAS  Google Scholar 

  40. Liu Y et al (2012) Microstructure and mechanical properties of aluminum 5083weldments by gas tungsten arc and gas metal arc welding. Mater Sci Eng A 549:7–13

    Article  CAS  Google Scholar 

  41. Guo Y et al (2018) An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy. Int J Adv Manuf Technol 98(5–8):14331440

    Google Scholar 

  42. Wang J, Zhou D, Xie L, Li X, Lu Y, Bai Z, Zhou J (2021) Effect of multi-pass friction stir processing on microstructures and mechanical behaviors of as-cast 2A14 aluminum alloy. J Mater Eng Perform 30:3033–3043

    Article  CAS  Google Scholar 

  43. Chen Y, Ding H, Cai Z, Zhao J, Li J (2016) Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy Mater. Sci Eng A 650:396–403

    Article  CAS  Google Scholar 

  44. Wang J, Yang K, Zhou D, Xie L, Lu Y, Li X (2021) Investigation on the microstructures and mechanical properties of friction stir processed 2A14 aluminum alloy fabricated by different initial precipitation states, The Int. J. Adv. Manuf. Technol. 116:3549–60

    Article  Google Scholar 

  45. He XC, Gu FS, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66

    Article  Google Scholar 

  46. Liu LM, Song G, Liang GL, Wang JF (2005) Mater Sci Eng A 390:76–80

    Article  Google Scholar 

  47. Duan S, Matsuda K, Zou Y, Wang T (2019) Influence of two-stage ageing process and Cu additions on conductive Al alloys based on AA 6063. Materials Research Express 6:106509

    Article  CAS  Google Scholar 

  48. Barmouz M, BesharatiGivi MK, Seyfi J (2011) On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater. Charact. 62:108–117

    Article  CAS  Google Scholar 

  49. Barmouz M, BesharatiGivi MK (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos. Part A 42(10):1445–1453

    Article  Google Scholar 

  50. Su P, Gerlich A, North TH, Bendzsak GJ (2013) Material flow during friction stir spot welding. Sci Technol Weld Joining 11(1):61–71

    Article  Google Scholar 

  51. Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength Author links open overlay panel. Scripta Materialia 54(7):1321–1326

    Article  CAS  Google Scholar 

  52. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater 51:509–514

    Article  CAS  Google Scholar 

  53. Oladijo OP, Venter AM, Cornish LA, Sacks N (2012) X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surf Coat Techno 206:4725–4729

    Article  CAS  Google Scholar 

  54. Paidar M (2019) Olatunji Oladimeji Ojo, Hamid Reza Ezatpour, Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol 361:159–169

    Article  CAS  Google Scholar 

  55. Pandey Chandan, AnojGiri MM (2016) Mahapatra, Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Materials Science & Engineering A 664:58–74

    Article  CAS  Google Scholar 

  56. Simar A, Brechet Y, Meester BD, Denquin A, Gallais C, Pardoen T (2012) Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process Microstructure and Properties. Prog Mater Sci 57:95–183

    Article  CAS  Google Scholar 

  57. Zhang Z, Wan ZY, Lindgren LE, Tan ZJ, Zhou X (2017) The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post Weld Heat Treatments. J Mater Eng Perform 26:5731–5740

    Article  CAS  Google Scholar 

  58. McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater 58:349–354

    Article  CAS  Google Scholar 

  59. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32:2879–2884

    Article  Google Scholar 

  60. Srivastava M, Rathee S, Siddiquee AN (2019) Investigation on the Effects of Silicon Carbide and Cooling Medium during Multi-Pass FSP of Al-Mg/ SiC Surface Composites. SILICON 11:2149–2157

    Article  CAS  Google Scholar 

  61. Mehdi H, Mishra RS (2021) Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2021.1964846

    Article  Google Scholar 

  62. Moradi MM, Aval HJ, Jamaati R, Amirkhanlou S, Ji S (2018) Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J Manuf Process 32:1–10

    Article  Google Scholar 

  63. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H (2019) Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J Mater Sci Technol 35:1412–1421

    Article  CAS  Google Scholar 

  64. Barmouz M, BesharatiGivi MK (2011) Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos. Part A Appl. Sci. Manuf. 42:1445–1453

    Article  Google Scholar 

  65. Lang P, Povoden-Karadeniz E, Falahati A, Kozeschnik E (2014) Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC. J. Alloys Compd. 612:443–449

    Article  CAS  Google Scholar 

  66. Liu FC, Ma ZY (2010) Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr Mater 62:125–128

    Article  CAS  Google Scholar 

  67. Paidar M, Asgari A, Ojo OO, Saberi A (2018) Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds. J Mater Eng Perfor 27:1714–1724

    Article  CAS  Google Scholar 

  68. Sharma DK, Patel V, Badheka V, Mehta K, Upadhyay G (2019) Fabrication of hybrid surface composites AA6061/(B4 C+MoS ) via friction stir processing. J Tribolo 141(5):52201–52210

    Article  CAS  Google Scholar 

  69. Husain Mehdi, R.S. Mishra, An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+FSP welding using RSM, Advances in Materials and Processing Technologies, 2020, https://doi.org/10.1080/2374068X.2020.1829952.

  70. Tariq M, Khan I, Hussain G, Farooq U (2019) Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. International Journal of Lightweight Materials and Manufacture 2(2):123–130

    Article  Google Scholar 

  71. Patel VV, BadhekaVand Kumar A (2017) Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J. Mater. Process. Technol. 240:68–76

    Article  CAS  Google Scholar 

  72. Qin H, Zhang Hand WuH (2015) The evolution of precipitation and microstructure in friction stir welded 2195–T8 Al–Li alloy Mater. Sci. Eng. A 626:322–329

    Article  CAS  Google Scholar 

  73. Chaurasia PK, Pandey C, Giri A, Saini N, Mahapatra MM (2018) a comparative study of residual stress and mechanical properties for fsw and tig weld on structural steel. Arch Metall Mater 63:1019–1029

    CAS  Google Scholar 

  74. Pandey C, Saini N (2017) Manas Mohan Mahapatra, Pradeep Kumar, Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes. Eng Fail Anal 71:131–147

    Article  CAS  Google Scholar 

  75. ChandanPandey MM, Mahapatra Pradeep Kumar, Prakash Kumar N, Saini J.G. Thakare (2019) Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel. Engineering Failure Analysis 96:158–167

    Article  Google Scholar 

  76. Msomi Velaphi, Mabuwa Sipokazi (2020) Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint. Advances in Industrial and Manufacturing Engineering 1:100002

    Article  Google Scholar 

  77. Orłowska Marta, Brynk Tomasz, Hütter Andreas, Enzinger Norbert, Olejnik Lech, Lewandowska Małgorzata (2020) Similar and dissimilar welds of ultrafine grained aluminium obtained by friction stir welding. Materials Science and Engineering: A 777:139076

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express heartfelt thanks to Department of Mechanical engineering, Cape Peninsula University of Technology, South Africa for providing the experimental setup and their corresponding labs for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Abdellah Nait Salah: Data curation, Writing-original draft preparation.

Sipokazi Mabuwa, and Velaphi Msomi: Conceived and planned the experiments, and carried out the experiments.

Husain Mehdi: Paper writing, and reviewing.

Mohammed Kaddami: Reviewing and editing.

Prabhujit Mohapatra: Editing and Visualization.

Corresponding author

Correspondence to Husain Mehdi.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Compliance with ethical standards

The authors have declared that no competing interests exist.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, A.N., Mabuwa, S., Mehdi, H. et al. Effect of Multipass FSP on Si-rich TIG Welded Joint of Dissimilar Aluminum Alloys AA8011-H14 and AA5083-H321: EBSD and Microstructural Evolutions. Silicon 14, 9925–9941 (2022). https://doi.org/10.1007/s12633-022-01717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01717-4

Keywords

Navigation