Skip to main content
Log in

Progress and prospects of chiral nanomaterials for biosensing platforms

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Chiral nanomaterials have distinct chiroptical properties of preferential interactions to circularly polarized lights. Chirality-based biosensors have emerged for detection of biomolecules, ions and cells in recent years. This review provides an extensive overview of biosensors based on chiral nanomaterials, starting with approaches to chiral nanomaterials construction in terms of fabrication strategies. Fabrication of chiral nanomaterials and their biosensor applications is presented for different material types, with special emphasis on the role and importance of material properties and signal generation in detection. We assessed the technological prospects of the emerging fields of chiral construction, circularly polarized luminescence, Raman optical activity and so on along with their current challenges. Prospective venues for future research on chiral nanomaterials in fabrication, biosensing, disease diagnosis and treatment are also presented in the review.

Graphical abstract

摘要

手性纳米材料具有与圆偏振光优先相互作用的独特手性特性。近年来出现了基于手性的生物传感器, 用于检测生物分子、金属离子和细胞。本综述从手性纳米材料的制造策略入手, 广泛概述了基于手性纳米材料的生物传感器。介绍了不同材料类型的手性纳米材料的制造及其生物传感器应用, 特别强调了材料特性和信号产生在检测中的作用和重要性。我们评估了手性构造、圆偏振发光和拉曼光学活性等新兴领域的技术前景及其当前面临的挑战。综述还介绍了手性纳米材料在制造、生物传感、疾病诊断和治疗方面的未来研究前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gal J. Pasteur and the art of chirality. Nat Chem. 2017;9(7):604. https://doi.org/10.1038/nchem.2790.

    Article  CAS  PubMed  Google Scholar 

  2. Hu M, Feng HT, Yuan YX, Zheng YS, Tang BZ. Chiral AIEgens—chiral recognition, CPL materials and other chiral applications. Coord Chem Rev. 2020;416:213329. https://doi.org/10.1016/j.ccr.2020.213329.

    Article  CAS  Google Scholar 

  3. Kong XT, Besteiro LV, Wang Z, Govorov AO. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: theoretical background and recent progress. Adv Mater. 2020;32(41):e1801790. https://doi.org/10.1002/adma.201801790.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao W, Wang RY, Wei H, Li J, Ji Y, Jiang X, Wu X, Zhang X. Recognition of chiral zwitterionic interactions at nanoscale interfaces by chiroplasmonic nanosensors. Phys Chem Chem Phys. 2017;19(32):21401. https://doi.org/10.1039/c7cp03004e.

    Article  CAS  PubMed  Google Scholar 

  5. Wang YF, Huang SS, Dai ZD, Xian SL, Wu XN, Gao FH, Hou YD. Engineering high-performance dielectric chiral shells with enhanced chiral fields for sensitive chiral biosensor. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02459-x.

    Article  CAS  Google Scholar 

  6. Sun MZ, Li S, Hao CL, Xu CL, Kuang H. Chiral nanoprobes and their biological effects. Chin J Chem. 2020;39(1):25. https://doi.org/10.1002/cjoc.202000392.

    Article  CAS  Google Scholar 

  7. Yoo S, Park QH. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics. 2019;8(2):249. https://doi.org/10.1515/nanoph-2018-0167.

    Article  Google Scholar 

  8. Knoppe S, Burgi T. Chirality in thiolate-protected gold clusters. Acc Chem Res. 2014;47(4):1318. https://doi.org/10.1021/ar400295d.

    Article  CAS  PubMed  Google Scholar 

  9. Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric recognition and separation by chiral nanoparticles. Molecules. 2019;24(6):1007. https://doi.org/10.3390/molecules24061007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbas SU, Li JJ, Liu X, Siddique A, Shi YX, Hou M, Yang K, Nosheen F, Cui XY, Zheng GC, Zhang ZC. Chiral metal nanostructures: synthesis, properties and applications. Rare Met. 2023;42(8):2489. https://doi.org/10.1007/s12598-023-02274-4.

    Article  CAS  Google Scholar 

  11. Sun MZ, Xu LG, Banhg JH, Kuang H, Alben S, Kotov NA, Xu CL. Intracellular localization of nanoparticle dimers by chirality reversal. Nat Commun. 2017;8(1):1847. https://doi.org/10.1038/s41467-017-01337-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma W, Xu LG, De Moura AF, Wu XL, Kuang H, Xu CL. Chiral inorganic nanostructures. Chem Rev. 2017;117(12):8041. https://doi.org/10.1021/acs.chemrev.6b00755.

    Article  CAS  PubMed  Google Scholar 

  13. Hao CL, Xu LG, Kuang H, Xu CL. Artificial chiral probes and bioapplications. Adv Mater. 2020;32(41):e1802075. https://doi.org/10.1002/adma.201802075.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao L, Zhou Y, Niu GM, Gao FC, Sun ZW, Li H, Jiang YY. Advances in chiral gold nano-assemblies and their bioapplication based on optical properties. Part Part Syst Charact. 2022;39(4):2100231. https://doi.org/10.1002/ppsc.202100231.

    Article  CAS  Google Scholar 

  15. Zor E, Bingol H,Ersoz M. Chiral sensors. TrAC, Trends Anal. Chem. 2019;121:115662. https://doi.org/10.1016/j.trac.2019.115662

  16. Gao XQ, Han B, Yang XK, Tang ZY. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J Am Chem Soc. 2019;141(35):13700. https://doi.org/10.1021/jacs.9b05973.

    Article  CAS  PubMed  Google Scholar 

  17. Wang XL, Tang ZY. Circular dichroism studies on plasmonic nanostructures. Small. 2017;13(1):1601115. https://doi.org/10.1002/smll.201601115.

    Article  CAS  Google Scholar 

  18. Ma W, Xu LG, Wang LB, Xu CL, Kuang H. Chirality-based biosensors. Adv Funct Mater. 2019;29(1):1805512. https://doi.org/10.1002/adfm.201805512.

    Article  CAS  Google Scholar 

  19. Ethordevic L, Arcudi F, D'urso A, Cacioppo M, Micali N, Burgi T, Purrello R, Prato M. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 2018;9(1):3442. https://doi.org/10.1038/s41467-018-05561-2

  20. Hao CL, Xu LG, Sun MZ, Ma W, Kuang H, Xu CL. Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv Funct Mater. 2018;28(33):1802372. https://doi.org/10.1002/adfm.201802372.

    Article  CAS  Google Scholar 

  21. Meng D, Ma W, Wu XL, Xu CL,Kuang H. DNA‐driven two‐layer core–satellite gold nanostructures for ultrasensitive microRNA detection in living cells. Small. 2020;16(23). https://doi.org/10.1002/smll.202000003

  22. Manoccio M, Esposito M, Primiceri E, Leo A, Tasco V, Cuscuna M, Zuev D, Sun Y, Maruccio G, Romano A, Quattrini A, Gigli G, Passaseo A. Femtomolar biodetection by a compact core-shell 3D chiral metamaterial. Nano Lett. 2021;21(14):6179. https://doi.org/10.1021/acs.nanolett.1c01791.

    Article  CAS  PubMed  Google Scholar 

  23. Hao C, Gao R, Li Y, Xu L, Sun M, Xu C, Kuang H. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew Chem Int Ed. 2019;58(22):7371. https://doi.org/10.1002/anie.201902673.

    Article  CAS  Google Scholar 

  24. Wang N, Fuh JYH, Dheen ST, Senthil KA. Synthesis methods of functionalized nanoparticles: a review. Bio-Des Manuf. 2021;4(2):379. https://doi.org/10.1007/s42242-020-00106-3.

    Article  Google Scholar 

  25. Fan J, Kotov NA. Chiral nanoceramics. Adv Mater. 2020;32(41):e1906738. https://doi.org/10.1002/adma.201906738.

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Liu Y, Chen FL, Lin QQ, Chikkaraddy R, Huang SS, Xian SL, Hou YD, Du JL, Xia LP, Du CL. Stepwise colloidal lithography toward scalable and various planar chiral metamaterials. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02420-y.

    Article  CAS  Google Scholar 

  27. Jiang S, Kotov NA. Circular polarized light emission in chiral inorganic nanomaterials. Adv Mater. 2022:e2108431. https://doi.org/10.1002/adma.202108431

  28. Ziegler C, Eychmüller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J Phys Chem C. 2011;115(11):4502. https://doi.org/10.1021/jp1106982.

    Article  CAS  Google Scholar 

  29. Li HB, Gao XS, Zhang CQ, Ji YL, Hu ZJ, Wu XC. Gold-nanoparticle-based chiral plasmonic nanostructures and their biomedical applications. Biosensors. 2022;12(11):957. https://doi.org/10.3390/bios12110957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee HE, Kim RM, Ahn HY, Lee YY, Byun GH, Im SW, Mun J, Rho J, Nam KT. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat Commun. 2020;11(1):263. https://doi.org/10.1038/s41467-019-14117-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee HE, Ahn HY, Mun J, Lee YY, Kim M, Cho NH, Chang K, Kim WS, Rho J, Nam KT. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360. https://doi.org/10.1038/s41586-018-0034-1.

    Article  CAS  PubMed  Google Scholar 

  32. Kim H, Im SW, Cho NH, Seo DH, Kim RM, Lim YC, Lee HE, Ahn HY, Nam KT. Gamma-glutamylcysteine- and cysteinylglycine-directed growth of chiral gold nanoparticles and their crystallographic analysis. Angew Chem Int Ed. 2020;59(31):12976. https://doi.org/10.1002/anie.202003760.

    Article  CAS  Google Scholar 

  33. Lee YY, Cho NH, Im SW, Lee HE, Ahn HY, Nam KT. Chiral 432 helicoid II nanoparticle synthesized with glutathione and poly(T) 20 nucleotide. ChemNanoMat. 2020;6(3):362. https://doi.org/10.1002/cnma.201900709.

    Article  CAS  Google Scholar 

  34. Ni B, Mychinko M, Gomez-Grana S, Morales-Vidal J, Obelleiro-Liz M, Heyvaert W, Vila-Liarte D, Zhuo X, Albrecht W, Zheng G, Gonzalez-Rubio G, Taboada JM, Obelleiro F, Lopez N, Perez-Juste J, Pastoriza-Santos I, Colfen H, Bals S, Liz-Marzan LM. Chiral seeded growth of gold nanorods into fourfold twisted nanoparticles with plasmonic optical activity. Adv Mater. 2023;35(1):e2208299. https://doi.org/10.1002/adma.202208299.

    Article  CAS  PubMed  Google Scholar 

  35. Cho NH, Lee HE, Ahn HY, Lee YY, Im SW, Kim H, Nam KT. Cysteine induced chiral morphology in palladium nanoparticle. Part Part Syst Charact. 2019;36(5):1900062. https://doi.org/10.1002/ppsc.201900062.

    Article  CAS  Google Scholar 

  36. Gonzalez-Rubio G, Mosquera J, Kumar V, Pedrazo-Tardajos A, Llombart P, Solis DM, Lobato I, Noya EG, Guerrero-Martinez A, Taboada JM, Obelleiro F, Macdowell LG, Bals S, Liz-Marzan LM. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science. 2020;368(6498):1472. https://doi.org/10.1126/science.aba0980.

    Article  CAS  PubMed  Google Scholar 

  37. Cao ZT, He J, Liu ZW, Zhang HR, Chen B. Chirality affecting reaction dynamics of HgS nanostructures simultaneously visualized in real and reciprocal space. ACS Nano. 2021;15(10):16255. https://doi.org/10.1021/acsnano.1c05243.

    Article  CAS  PubMed  Google Scholar 

  38. Wang PP, Yu SJ, Ouyang M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. JACS. 2017;139(17):6070. https://doi.org/10.1021/jacs.7b02523.

    Article  CAS  Google Scholar 

  39. Wang PP, Yu SJ, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun. 2017;8(1):14312. https://doi.org/10.1038/ncomms14312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B. 2002;106(29):7177. https://doi.org/10.1021/jp025541k.

    Article  CAS  Google Scholar 

  41. Kumar J, Thomas KG, Liz-Marzan LM. Nanoscale chirality in metal and semiconductor nanoparticles. Chem Commun. 2016;52(85):12555. https://doi.org/10.1039/c6cc05613j.

    Article  CAS  Google Scholar 

  42. Mukhina MV, Maslov VG, Baranov AV, Fedorov AV, Orlova AO, Purcell-Milton F, Govan J, Gun’ko YK. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015;15(5):2844. https://doi.org/10.1021/nl504439w.

    Article  CAS  PubMed  Google Scholar 

  43. Ma MX, Chen JH, Liu HY, Huang ZH, Huang FH, Li QL, Xu Y. A review on chiral metal-organic frameworks: synthesis and asymmetric applications. Nanoscale. 2022;14(37):13405. https://doi.org/10.1039/d2nr01772e.

    Article  CAS  PubMed  Google Scholar 

  44. Kan X, Wang JC, Chen Z, Du JQ, Kan JL, Li WY, Dong YB. Synthesis of metal-free chiral covalent organic framework for visible-light-mediated enantioselective photooxidation in water. JACS. 2022;144(15):6681. https://doi.org/10.1021/jacs.2c01186.

    Article  CAS  Google Scholar 

  45. Shi PC, Si DH, Yao MS, Liu TT, Huang YB, Zhang T, Cao R. Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction. Sci China Mater. 2022;65(6):1531. https://doi.org/10.1007/s40843-021-1919-5.

    Article  CAS  Google Scholar 

  46. Xiao YH, Zhang YX, Zhai R, Gu ZG, Zhang J. Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction. Sci China Mater. 2021;65(5):1269. https://doi.org/10.1007/s40843-021-1835-8.

    Article  CAS  Google Scholar 

  47. Kazem-Rostami M, Orte A, Ortuño AM, David AHG, Roy I, Miguel D, Garci A, Cruz CM, Stern CL, Cuerva JM, Stoddart JF. Helically chiral hybrid cyclodextrin metal–organic framework exhibiting circularly polarized luminescence. JACS. 2022;144(21):9380. https://doi.org/10.1021/jacs.2c01554.

    Article  CAS  Google Scholar 

  48. Liu WJ, Zhu ZN, Deng K, Li ZT, Zhou YL, Qiu HB, Gao Y, Che SN, Tang ZY. Gold nanorod@chiral mesoporous silica core–shell nanoparticles with unique optical properties. JACS. 2013;135(26):9659. https://doi.org/10.1021/ja312327m.

    Article  CAS  Google Scholar 

  49. Maoz BM, Van Der Weegen R, Fan Z, Govorov AO, Ellestad G, Berova N, Meijer EW, Markovich G. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J Am Chem Soc. 2012;134(42):17807. https://doi.org/10.1021/ja309016k.

    Article  CAS  PubMed  Google Scholar 

  50. Wang JC, Wu XL, Ma W, Xu CL. Chiral AuCuAu heterogeneous nanorods with tailored optical activity. Adv Funct Mater. 2020;30(17):2000670. https://doi.org/10.1002/adfm.202000670.

    Article  CAS  Google Scholar 

  51. Bao ZY, Zhang W, Zhang YL, He J, Dai J, Yeung CT, Law GL, Lei DY. Interband absorption enhanced optical activity in discrete Au@Ag core–shell nanocuboids: probing extended helical conformation of chemisorbed cysteine molecules. Angew Chem Int Ed. 2016;56(5):1283. https://doi.org/10.1002/anie.201607563.

    Article  CAS  Google Scholar 

  52. Moloney MP, Gun'ko YK, Kelly JM. Chiral highly luminescent CdS quantum dots. Chem Commun. 2007;(38):3900. https://doi.org/10.1039/b704636g

  53. Li YW, Cheng JJ, Li JG, Zhu X, He TC, Chen R, Tang ZK. Tunable chiroptical properties from the plasmonic band to metal-ligand charge transfer band of cysteine-capped molybdenum oxide nanoparticles. Angew Chem Int Ed. 2018;57(32):10236. https://doi.org/10.1002/anie.201806093.

    Article  CAS  Google Scholar 

  54. Nakashima T, Kobayashi Y, Kawai T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. JACS. 2009;131(30):10342. https://doi.org/10.1021/ja902800f.

    Article  CAS  Google Scholar 

  55. Gao XQ, Zhang XW, Deng K, Han B, Zhao LY, Wu MH, Shi L, Lv JW, Tang ZY. Excitonic circular dichroism of chiral quantum rods. JACS. 2017;139(25):8734. https://doi.org/10.1021/jacs.7b04224.

    Article  CAS  Google Scholar 

  56. Varga K, Tannir S, Haynie BE, Leonard BM, Dzyuba SV, Kubelka J, Balaz M. CdSe quantum dots functionalized with chiral, thiol-free carboxylic acids: unraveling structural requirements for ligand-induced chirality. ACS Nano. 2017;11(10):9846. https://doi.org/10.1021/acsnano.7b03555.

    Article  CAS  PubMed  Google Scholar 

  57. Choi JK, Haynie BE, Tohgha U, Pap L, Elliott KW, Leonard BM, Dzyuba SV, Varga K, Kubelka J, Balaz M. Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand. ACS Nano. 2016;10(3):3809. https://doi.org/10.1021/acsnano.6b00567.

    Article  CAS  PubMed  Google Scholar 

  58. Tohgha U, Deol KK, Porter AG, Bartko SG, Choi JK, Leonard BM, Varga K, Kubelka J, Muller G, Balaz M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano. 2013;7(12):11094. https://doi.org/10.1021/nn404832f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma W, Mao JT, Hao CL, Xu LG, Xu CL, Kuang H. Chiral semiconductor nanorod heterostructures with high photocatalysis activity. Appl. Catal. B. 2019;245:691. https://doi.org/10.1016/j.apcatb.2019.01.038

  60. Han X, Yuan C, Hou B, Liu LJ, Li HY, Liu Y, Cui Y. Chiral covalent organic frameworks: design, synthesis and property. Chem Soc Rev. 2020;49(17):6248. https://doi.org/10.1039/d0cs00009d.

    Article  CAS  PubMed  Google Scholar 

  61. Xu H, Gao J, Jiang DL. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem. 2015;7(11):905. https://doi.org/10.1038/nchem.2352.

    Article  CAS  PubMed  Google Scholar 

  62. Wei XF, Li LH, Lian HT, Cao XG, Liu B. Grain-like chiral metal-organic framework/multi-walled carbon nanotube composited electrosensing interface for enantiorecognition of Tryptophan. J Electroanal Chem. 2021;886:115108. https://doi.org/10.1016/j.jelechem.2021.115108.

    Article  CAS  Google Scholar 

  63. Hu XJ, Huang G, Zhang S, Fang ZB, Liu TF, Cao R. An easy and low-cost method of embedding chiral molecules in metal-organic frameworks for enantioseparation. Chem Commun. 2020;56(54):7459. https://doi.org/10.1039/d0cc03349a.

    Article  CAS  Google Scholar 

  64. Zhuo SQ, Wang XH, Li LY, Yang S, Ji YB. Chiral carboxyl-functionalized covalent organic framework for enantioselective adsorption of amino acids. ACS Appl Mater Interfaces. 2021;13(26):31059. https://doi.org/10.1021/acsami.1c09238.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang ML, Ma YR, Wang HB, Wang B, Zhou YJ, Liu Y, Shao MW, Huang H, Lu F, Kang ZH. Chiral control of carbon dots via surface modification for tuning the enzymatic activity of glucose oxidase. ACS Appl Mater Interfaces. 2021;13(4):5877. https://doi.org/10.1021/acsami.0c21949.

    Article  CAS  PubMed  Google Scholar 

  66. Das A, Arefina IA, Danilov DV, Koroleva AV, Zhizhin EV, Parfenov PS, Kuznetsova VA, Ismagilov AO, Litvin AP, Fedorov AV, Ushakova EV, Rogach AL. Chiral carbon dots based on L/D-cysteine produced via room temperature surface modification and one-pot carbonization. Nanoscale. 2021;13(17):8058. https://doi.org/10.1039/d1nr01693h.

    Article  CAS  PubMed  Google Scholar 

  67. Barrow SJ, Funston AM, Wei X, Mulvaney P. DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today. 2013;8(2):138. https://doi.org/10.1016/j.nantod.2013.02.005.

    Article  CAS  Google Scholar 

  68. Langille MR, Personick ML, Zhang J, Mirkin CA. Bottom-up synthesis of gold octahedra with tailorable hollow features. J Am Chem Soc. 2011;133(27):10414. https://doi.org/10.1021/ja204375d.

    Article  CAS  PubMed  Google Scholar 

  69. Tan SJ, Campolongo MJ, Luo D, Cheng W. Building plasmonic nanostructures with DNA. Nat Nanotechnol. 2011;6(5):268. https://doi.org/10.1038/nnano.2011.49.

    Article  CAS  PubMed  Google Scholar 

  70. Ding BQ, Deng ZT, Yan H, Cabrini S, Zuckermann RN, Bokor J. Gold nanoparticle self-similar chain structure organized by DNA origami. JACS. 2010;132(10):3248. https://doi.org/10.1021/ja9101198.

    Article  CAS  Google Scholar 

  71. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, Simmel FC, Govorov AO, Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012;483(7389):311. https://doi.org/10.1038/nature10889.

    Article  CAS  PubMed  Google Scholar 

  72. Chen CL, Rosi NL. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. JACS. 2010;132(20):6902. https://doi.org/10.1021/ja102000g.

    Article  CAS  Google Scholar 

  73. Song M, Tong L, Liu S, Zhang Y, Dong J, Ji Y, Guo Y, Wu X, Zhang X, Wang RY. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano. 2021;15(3):5715. https://doi.org/10.1021/acsnano.1c01158.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao W, Zhang W, Wang RY, Ji Y, Wu X, Zhang X. Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv Funct Mater. 2019;29(20):1900587. https://doi.org/10.1002/adfm.201900587.

    Article  CAS  Google Scholar 

  75. Mastroianni AJ, Claridge SA, Alivisatos AP. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc. 2009;131(24):8455. https://doi.org/10.1021/ja808570g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang Y, Nguyen MK, Kuzyk A. Assembly of gold nanorods into chiral plasmonic metamolecules using DNA origami templates. J Vis Exp. 2019;145:e59280. https://doi.org/10.3791/59280.

    Article  CAS  Google Scholar 

  77. Fan Z, Govorov AO. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 2010;10(7):2580. https://doi.org/10.1021/nl101231b.

    Article  CAS  PubMed  Google Scholar 

  78. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297. https://doi.org/10.1038/nature04586.

    Article  CAS  PubMed  Google Scholar 

  79. Liu J, Ma D. Special topic: DNA-based biosensors. J Anal Test. 2022;6(1):1. https://doi.org/10.1007/s41664-022-00215-1.

    Article  Google Scholar 

  80. Nguyen L, Dass M, Ober MF, Besteiro LV, Wang ZM, Nickel B, Govorov AO, Liedl T, Heuer-Jungemann A. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity. ACS Nano. 2020;14(6):7454. https://doi.org/10.1021/acsnano.0c03127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MA, Saccà B, Simmel FC. DNA origami. Nat Rev Methods Primers. 2021;1(1):13. https://doi.org/10.1038/s43586-020-00009-8.

    Article  CAS  Google Scholar 

  82. Zhang Y, Qu ZB, Jiang C, Liu YY, Narayanan RP, Williams D, Zuo XL, Wang LH, Yan H, Liu HJ, Fan CH. Prescribing silver chirality with DNA origami. JACS. 2021;143(23):8639. https://doi.org/10.1021/jacs.1c00363.

    Article  CAS  Google Scholar 

  83. Li Z, Shi L, Tang Z. An introduction to chiral nanomaterials: origin, construction, and optical application. Wiley, New York. 2018. https://doi.org/10.1002/9783527682782.ch1.

  84. Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P, Sun K, Lee J, Xu C, Lilly GD, Glotzer SC, Kotov NA. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science. 2010;327(5971):1355. https://doi.org/10.1126/science.1177218.

    Article  CAS  PubMed  Google Scholar 

  85. Yeom J, Yeom B, Chan H, Smith KW, Dominguez-Medina S, Bahng Joong H, Zhao G, Chang WS, Chang SJ, Chuvilin A, Melnikau D, Rogach AL, Zhang P, Link S, Král P, Kotov NA. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015;14(1):66. https://doi.org/10.1038/nmat4125

  86. Yan J, Feng WC, Kim JY, Lu J, Kumar P, Mu ZZ, Wu XC, Mao XM, Kotov NA. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem Mater. 2019;32(1):476. https://doi.org/10.1021/acs.chemmater.9b04143.

    Article  CAS  Google Scholar 

  87. Feng WC, Kim JY, Wang XZ, Calcaterra HA, Qu ZB, Meshi L, Kotov NA. Assembly of mesoscale helices with near- unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci Adv. 2017;3(3): e1601159. https://doi.org/10.1126/sciadv.1601159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu K, Yin L, Huang Y, Shifa TA, Chu JW, Wang F, Cheng RQ, Wang ZX, He J. Synthesis, properties and applications of 2D layered M(III)X(VI) (M = Ga, In; X = S, Se, Te) materials. Nanoscale. 2016;8(38):16802. https://doi.org/10.1039/c6nr05976g.

    Article  CAS  PubMed  Google Scholar 

  89. Kumar S, Aziz SKT, Girshevitz O, Nessim GD. One-step synthesis of n-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. J Phys Chem C. 2018;122(4):2343. https://doi.org/10.1021/acs.jpcc.7b05494.

    Article  CAS  Google Scholar 

  90. Wang XQ, Xi GC, Xiong SL, Liu YK, Xi BJ, Yu W, Qian Y. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings. Cryst Growth Des. 2007;7(5):930. https://doi.org/10.1021/cg060798j.

    Article  CAS  Google Scholar 

  91. Wu CZ, Zhu HO, Dai J, Yan WS, Yang JL, Tian YC, Wei SQ, Xie Y. Room-temperature ferromagnetic silver vanadium oxide (Ag1.2V3O8): a magnetic semiconductor nanoring structure. Adv Funct Mater. 2010;20(21):3666. https://doi.org/10.1002/adfm.201001179

  92. Xu CY, Wu J, Lv LX, Cui JX, Wang ZQ, Huang YD, Zhen L. Single-crystal Na2Ti6O13 nanorings formed by self-coiling of a nanobelt. CrystEngComm. 2011;13(7):2674. https://doi.org/10.1039/c0ce00625d.

    Article  CAS  Google Scholar 

  93. Yakubovsky DI, Stebunov YV, Kirtaev RV, Ermolaev GA, Mironov MS, Novikov SM, Arsenin AV, Volkov VS. Ultrathin and ultrasmooth gold films on monolayer MoS2. Adv Mater Interfaces. 2019;6(13):1900196. https://doi.org/10.1002/admi.201900196.

    Article  CAS  Google Scholar 

  94. Yang P, Deng QZ, Duan YY, Liu ZX, Fang YI, Han L, Che SN. Chiral nanostructured bimetallic Au–Ag films for enantiomeric discrimination. Adv Mater Interfaces. 2022;9(19):2200369. https://doi.org/10.1002/admi.202200369.

    Article  CAS  Google Scholar 

  95. Cai JR, Zhang W, Xu LG, Hao CL, Ma W, Sun MZ, Wu XL, Qin X, Colombari FM, De Moura AF, Xu JH, Silva MC, Carneiro-Neto EB, Gomes WR, Vallee RaL, Pereira EC, Liu XG, Xu CL, Klajn R, Kotov NA, Kuang H. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat Nanotechnol. 2022;17(4):408. https://doi.org/10.1038/s41565-022-01079-3

  96. Meng D, Hao C, Cai JR, Ma W, Chen C, Xu CL, Xu LG, Kuang H. Tailored chiral copper selenide nanochannels for ultrasensitive enantioselective recognition and detection. Angew Chem Int Ed. 2021;60(47):24997. https://doi.org/10.1002/anie.202109920.

    Article  CAS  Google Scholar 

  97. Lv JW, Hou K, Ding DF, Wang DW, Han B, Gao XQ, Zhao M, Shi L, Guo J, Zheng YL, Zhang X, Lu CG, Huang L, Huang W, Tang ZY. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew Chem. 2017;129(18):5137. https://doi.org/10.1002/ange.201701512.

    Article  Google Scholar 

  98. Chen LJ, Hao C, Cai JR, Chen C, Ma W, Xu CL, Xu LG, Kuang H. Chiral self-assembled film from semiconductor nanorods with ultra-strong circularly polarized luminescence. Angew Chem Int Ed. 2021;60(50):26276. https://doi.org/10.1002/anie.202112582.

    Article  CAS  Google Scholar 

  99. Pan MY, Cai J, Li S, Xu LG, Ma W, Xu CL, Kuang H. Aptamer-gated Ion channel for ultrasensitive Mucin 1 detection. Anal Chem. 2021;93(11):4825. https://doi.org/10.1021/acs.analchem.0c04137.

    Article  CAS  PubMed  Google Scholar 

  100. Yeom B, Zhang HN, Zhang H, Park JI, Kim K, Govorov AO, Kotov NA. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 2013;13(11):5277. https://doi.org/10.1021/nl402782d.

    Article  CAS  PubMed  Google Scholar 

  101. Deng YJ, Wang MZ, Zhuang YL, Liu SJ, Huang W, Zhao Q. Circularly polarized luminescence from organic micro-/nano-structures. Light Sci Appl. 2021;10(1):76. https://doi.org/10.1038/s41377-021-00516-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roose J, Tang BZ, Wong KS. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small. 2016;12(47):6495. https://doi.org/10.1002/smll.201601455.

    Article  CAS  PubMed  Google Scholar 

  103. Kim RM, Huh JH, Yoo S, Kim TG, Kim C, Kim H, Han JH, Cho NH, Lim YC, Im SW, Im E, Jeong JR, Lee MH, Yoon TY, Lee HY, Park QH, Lee S, Nam KT. Enantioselective sensing by collective circular dichroism. Nature. 2022;612(7940):470. https://doi.org/10.1038/s41586-022-05353-1.

    Article  CAS  PubMed  Google Scholar 

  104. Cao R, Yang X, Wang Y, Xiao Y. Induced circularly polarized luminescence of perovskite nanocrystals by self-assembly chiral gel. Nano Res. 2022;16:1459. https://doi.org/10.1007/s12274-022-4652-4.

    Article  CAS  Google Scholar 

  105. Ohnoutek L, Cho NH, Allen Murphy AW, Kim H, Rasadean DM, Pantos GD, Nam KT, Valev VK. Single nanoparticle chiroptics in a liquid: optical activity in hyper-rayleigh scattering from Au helicoids. Nano Lett. 2020;20(8):5792. https://doi.org/10.1021/acs.nanolett.0c01659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ru YW, Zhang B, Yong X, Sui LZ, Yu JK, Song HQ, Lu SY. Full-color circularly polarized luminescence of CsPbX3 nanocrystals triggered by chiral carbon dots. Adv Mater. 2023;35(5):e2207265. https://doi.org/10.1002/adma.202207265.

    Article  CAS  PubMed  Google Scholar 

  107. Chen SM, Chang LM, Yang XK, Luo T, Xu H, Gu ZG, Zhang J. Liquid-phase epitaxial growth of azapyrene-based chiral metal-organic gramework thin films for circularly polarized luminescence. ACS Appl Mater Interfaces. 2019;11(34):31421. https://doi.org/10.1021/acsami.9b11872.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregation-induced emission: new vistas at the aggregate level. Angew Chem Int Ed. 2020;59(25):9888. https://doi.org/10.1002/anie.201916729.

    Article  CAS  Google Scholar 

  109. Karst J, Cho NH, Kim H, Lee HE, Nam KT, Giessen H, Hentschel M. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano. 2019;13(8):8659. https://doi.org/10.1021/acsnano.9b04046.

    Article  CAS  PubMed  Google Scholar 

  110. Wang XW, Liu BY, Xiao MS, Zou YX, Lai W, Pei H, Alam MF, Zhang WJ, Wan Y, Li L. Fractal SERS nanoprobes for multiplexed quantitative gene profiling. Biosens Bioelectron. 2020;156: 112130. https://doi.org/10.1016/j.bios.2020.112130.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Yang YX, Luo YD, Yang X, Li ML, Song QJ. Double detection of mycotoxins based on SERS labels embedded Ag@Au core-shell nanoparticles. ACS Appl Mater Interfaces. 2015;7(39):21780. https://doi.org/10.1021/acsami.5b07804.

    Article  CAS  PubMed  Google Scholar 

  112. Yu T, Jing L, Jian Y, Xing KL, Wen LQ. Filled carbon-nanotube heterostructures: from synthesis to application. Microstructures. 2023;3(3):2023019. https://doi.org/10.20517/microstructures.2023.07

  113. Wang G, Hao CL, Ma W, Qu AH, Chen C, Xu J, Xu CL, Kuang H, Xu LG. Chiral plasmonic triangular nanorings with SERS activity for ultrasensitive detection of amyloid proteins in alzheimer’s disease. Adv Mater. 2021;33(38):e2102337. https://doi.org/10.1002/adma.202102337.

    Article  CAS  PubMed  Google Scholar 

  114. Xing TY, Qian QP, Ye H, Wang ZH, Jin YY, Zhang NX, Wang MY, Zhou YL, Gao XQ, Wu LJ. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation. Biosens Bioelectron. 2022;212:114430. https://doi.org/10.1016/j.bios.2022.114430.

    Article  CAS  PubMed  Google Scholar 

  115. Arabi M, Ostovan A, Wang YQ, Mei RC, Fu LW, Li JH, Wang XY, Chen LX. Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun. 2022;13(1):5757. https://doi.org/10.1038/s41467-022-33448-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fujisawa T, Leverenz RL, Nagamine M, Kerfeld CA, Unno M. Raman optical activity reveals carotenoid photoactivation events in the orange carotenoid protein in solution. J Am Chem Soc. 2017;139(30):10456. https://doi.org/10.1021/jacs.7b05193.

    Article  CAS  PubMed  Google Scholar 

  117. Xiao TH, Cheng Z, Luo Z, Isozaki A, Hiramatsu K, Itoh T, Nomura M, Iwamoto S, Goda K. All-dielectric chiral-field-enhanced raman optical activity. Nat Commun. 2021;12(1):3062. https://doi.org/10.1038/s41467-021-23364-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li GJ, Alshalalfeh M, Yang YQ, Cheeseman JR, Bour P, Xu YJ. Can one measure resonance raman optical activity? Angew Chem Int Ed. 2021;60(40):22004. https://doi.org/10.1002/anie.202109345.

    Article  CAS  Google Scholar 

  119. Abdali S, Blanch EW. Surface enhanced Raman optical activity (SEROA). Chem Soc Rev. 2008;37(5):980. https://doi.org/10.1039/b707862p.

    Article  CAS  PubMed  Google Scholar 

  120. Xiao TH, Cheng Z, Goda K. Giant optical activity in an all-dielectric spiral nanoflower. Small. 2018;14(31):e1800485. https://doi.org/10.1002/smll.201800485.

    Article  CAS  Google Scholar 

  121. Zhu SY, Sun MT. Electronic circular dichroism and Raman optical activity: principle and applications. Appl Spectrosc Rev. 2020;56(7):553. https://doi.org/10.1080/05704928.2020.1831523.

    Article  CAS  Google Scholar 

  122. Sato H. A new horizon for vibrational circular dichroism spectroscopy: a challenge for supramolecular chirality. Phys Chem Chem Phys. 2020;22(15):7671. https://doi.org/10.1039/d0cp00713g.

    Article  CAS  PubMed  Google Scholar 

  123. Phal Y, Yeh K, Bhargava R. Concurrent vibrational circular dichroism measurements with infrared spectroscopic imaging. Anal Chem. 2021;93(3):1294. https://doi.org/10.1021/acs.analchem.0c00323.

    Article  CAS  PubMed  Google Scholar 

  124. Merten C. Recent advances in the application of vibrational circular dichroism spectroscopy for the characterization of asymmetric catalysts. Eur J Org Chem. 2020;2020(37):5892. https://doi.org/10.1002/ejoc.202000876.

    Article  CAS  Google Scholar 

  125. Buelna-Garcia CE, Robles-Chaparro E, Parra-Arellano T, Quiroz-Castillo JM, Del-Castillo-Castro T, Martinez-Guajardo G, Castillo-Quevedo C, De-Leon-Flores A, Anzueto-Sanchez G, Martin-Del-Campo-Solis MF, Mendoza-Wilson AM, Vasquez-Espinal A, Cabellos JL. Theoretical prediction of structures, vibrational circular dichroism, and infrared spectra of chiral Be4B8 cluster at different temperatures. Molecules. 2021;26(13):23. https://doi.org/10.3390/molecules26133953.

    Article  CAS  Google Scholar 

  126. Poline M, Rebrov O, Larsson M, Zhaunerchyk V. Theoretical studies of infrared signatures of proton-bound amino acid dimers with homochiral and heterochiral moieties. Chirality. 2020;32(3):359. https://doi.org/10.1002/chir.23165.

    Article  CAS  PubMed  Google Scholar 

  127. Khorsand AR, Savoini M, Kirilyuk A, Kimel AV, Tsukamoto A, Itoh A, Rasing T. Role of magnetic circular dichroism in all-optical magnetic recording. Phys Rev Lett. 2012;108(12): 127205. https://doi.org/10.1103/PhysRevLett.108.127205.

    Article  CAS  PubMed  Google Scholar 

  128. Lin JX, Chen YR, Sun SJ, Hu CK, Chen BJ, Hsu HS. Field-free magnetoplasmon-induced ultraviolet circular dichroism switching in premagnetized magnetic nanowires. ACS Appl Mater Interfaces. 2022;14(9):11895. https://doi.org/10.1021/acsami.1c23505.

    Article  CAS  PubMed  Google Scholar 

  129. Braik M, Sow I, Nelayah J, Belkhir A, Faustini M, Mercone S, Nowak S, Decorse P, Piquemal JY, Felidj N. Introducing cobalt as a potential plasmonic candidate combining optical and magnetic functionalities within the same nanostructure. Nanoscale. 2021;13(4):2639. https://doi.org/10.1039/d0nr06966c.

    Article  CAS  PubMed  Google Scholar 

  130. Gwak J, Park SJ, Choi HY, Lee JH, Jeong KJ, Lee D, Tran VT, Son KS, Lee J. Plasmonic enhancement of chiroptical property in enantiomers using a helical array of magnetoplasmonic nanoparticles for ultrasensitive chiral recognition. ACS Appl Mater Interfaces. 2021;13(39):46886. https://doi.org/10.1021/acsami.1c14047.

    Article  CAS  PubMed  Google Scholar 

  131. Luong HM, Pham MT, Nguyen TD, Zhao Y. Active Ag/Co composite chiral nanohole arrays. J Phys Chem C. 2020;125(1):716. https://doi.org/10.1021/acs.jpcc.0c08057.

    Article  CAS  Google Scholar 

  132. Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P, Dmitriev A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 2018;18(1):302. https://doi.org/10.1021/acs.nanolett.7b04139.

    Article  CAS  PubMed  Google Scholar 

  133. Zhuang TT, Li Y, Gao XQ, Wei MY, García De Arquer FP, Todorović P, Tian J, Li GP, Zhang C, Li XY, Dong L, Song YH, Lu Y, Yang XK, Zhang LB, Fan FJ, Kelley SO, Yu SH, Tang ZY, Sargent EH. Regioselective magnetization in semiconducting nanorods. Nat Nanotech. 2020;15(3):192. https://doi.org/10.1038/s41565-019-0606-8

  134. Han B, Gao XQ, Lv JW, Tang ZY. Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv Mater. 2020;32(41):e1801491. https://doi.org/10.1002/adma.201801491.

    Article  CAS  PubMed  Google Scholar 

  135. Fan JN, Cheng YQ, Sun MT. Functionalized gold nanoparticles: synthesis, properties and biomedical applications. Chem Rec. 2020;20(12):1474. https://doi.org/10.1002/tcr.202000087.

    Article  CAS  PubMed  Google Scholar 

  136. Liu Y, Wei M, Zhang L, Zhang Y, Wei W, Yin L, Pu Y, Liu S. Chiroplasmonic assemblies of gold nanoparticles for ultrasensitive detection of 8-hydroxy-2’-deoxyguanosine in human serum sample. Anal Chem. 2016;88(12):6509. https://doi.org/10.1021/acs.analchem.6b01258.

    Article  CAS  PubMed  Google Scholar 

  137. Wu FX, Li FH, Lv XL, Zhang QX, Xu GB, Niu WX. Heteroepitaxial growth of Au@Pd core–shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02402-0.

    Article  Google Scholar 

  138. Liu Y, Wei M, Zhang L, Wei W, Zhang Y, Liu S. Evaluation of DNA methyltransferase activity and inhibition via chiroplasmonic assemblies of gold nanoparticles. ChemComm. 2015;51(76):14350. https://doi.org/10.1039/c5cc05375g.

    Article  CAS  Google Scholar 

  139. Yan WJ, Xu LG, Ma W, Liu LQ, Wang LB, Kuang H, Xu CL. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. Small. 2014;10(21):4293. https://doi.org/10.1002/smll.201401641.

    Article  CAS  PubMed  Google Scholar 

  140. Funck T, Nicoli F, Kuzyk A, Liedl T. Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew Chem Int Ed. 2018;57(41):13495. https://doi.org/10.1002/anie.201807029.

    Article  CAS  Google Scholar 

  141. Li HX, Wang LT, Yan SM, Chen JL, Zhang MM, Zhao R, Niu XH, Wang KJ. Fusiform-like metal-organic framework for enantioselective discrimination of tryptophan enantiomers. Electrochim Acta. 2022;419:140409. https://doi.org/10.1016/j.electacta.2022.140409.

    Article  CAS  Google Scholar 

  142. Liu LZ, Zhu QY, Li JW, Chen JX, Huang JH, Sun QF, Wen ZH. Atomistic engineering of Ag/Pt nanoclusters for remarkably boosted mass electrocatalytic activity. Energy Mater. 2022;2(2):200007. https://doi.org/10.20517/energymater.2022.03

  143. Fan Z, Govorov AO. Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism. J Phys Chem C. 2011;115(27):13254. https://doi.org/10.1021/jp204265x.

    Article  CAS  Google Scholar 

  144. Yu JW, Wang YQ, Zhu L, Jiang H, Hao JY, Zhang YF, Liu M, Li J, Ji XB, Li WZ. Chirality induces the self-assembly to generate a 3D porous spiral-like polyhedron as Metal-Free electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces. 2019;11(49):45596. https://doi.org/10.1021/acsami.9b14775.

    Article  CAS  PubMed  Google Scholar 

  145. Li Y, Liu C, Bai X, Tian F, Hu G, Sun J. Enantiomorphic microvortex-enabled supramolecular sensing of racemic amino acids by using achiral building blocks. Angew Chem Int Ed Engl. 2020;59(9):3486. https://doi.org/10.1002/anie.201913882.

    Article  CAS  PubMed  Google Scholar 

  146. Lan X, Zhou X, Mccarthy LA, Govorov AO, Liu Y, Link S. DNA-enabled chiral gold nanoparticle-chromophore hybrid structure with resonant plasmon-exciton coupling gives unusual and strong circular dichroism. J Am Chem Soc. 2019;141(49):19336. https://doi.org/10.1021/jacs.9b08797.

    Article  CAS  PubMed  Google Scholar 

  147. Kneer LM, Roller EM, Besteiro LV, Schreiber R, Govorov AO, Liedl T. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots. ACS Nano. 2018;12(9):9110. https://doi.org/10.1021/acsnano.8b03146.

    Article  CAS  PubMed  Google Scholar 

  148. Scampicchio M, Arecchi A, Mannino S. Optical nanoprobes based on gold nanoparticles for sugar sensing. Nanotechnology. 2009;20(13):135501. https://doi.org/10.1088/0957-4484/20/13/135501.

    Article  CAS  PubMed  Google Scholar 

  149. Zhou J, Duan JX, Zhang XE, Wang Q, Men D. A chiral responsive carbon dots-gold nanoparticle complex mediated by hydrogen peroxide independent of surface modification with chiral ligands. Nanoscale. 2018;10(39):18606. https://doi.org/10.1039/c8nr06862c.

    Article  CAS  PubMed  Google Scholar 

  150. Cai WB, Chen XY. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007;3(11):1840. https://doi.org/10.1002/smll.200700351.

    Article  CAS  PubMed  Google Scholar 

  151. Westerlund F, Bjørnholm T. Directed assembly of gold nanoparticles. Curr Opin Colloid Interface Sci. 2009;14(2):126. https://doi.org/10.1016/j.cocis.2008.07.002.

    Article  CAS  Google Scholar 

  152. Mosquera J, Zhao Y, Jang HJ, Xie N, Xu C, Kotov NA, Liz-Marzán LM. Plasmonic nanoparticles with supramolecular recognition. Adv Funct Mater. 2019;30(2):1902082. https://doi.org/10.1002/adfm.201902082.

    Article  CAS  Google Scholar 

  153. Wu XL, Xu LG, Liu LQ, Ma W, Yin HH, Kuang H, Wang LB, Xu CL, Kotov NA. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. JACS. 2013;135(49):18629. https://doi.org/10.1021/ja4095445.

    Article  CAS  Google Scholar 

  154. Wang S, Zheng LH, Chen WJ, Ji LK, Zhang L, Lu WS, Fang ZY, Guo FC, Qi LM, Liu MH. Helically grooved gold nanoarrows:controlled fabrication, superhelix, and transcribed chiroptical switching. CCS Chem. 2021;3(9):2473. https://doi.org/10.31635/ccschem.020.202000472

  155. Wang M, Dong JY, Zhou C, Xie H, Ni WH, Wang S, Jin HL, Wang QB. Reconfigurable plasmonic diastereomers assembled by DNA origami. ACS Nano. 2019;13(12):13702. https://doi.org/10.1021/acsnano.9b06734.

    Article  CAS  PubMed  Google Scholar 

  156. Ma W, Sun MZ, Fu P, Li S, Xu LG, Kuang H, Xu CL. A chiral-nanoassemblies-enabled strategy for simultaneously profiling surface glycoprotein and microRNA in living cells. Adv Mater. 2017;29(42):1703410. https://doi.org/10.1002/adma.201703410.

    Article  CAS  Google Scholar 

  157. Zheng GC, Jiao SL, Zhang W, Wang SL, Zhang QH, Gu L, Ye WX, Li JJ, Ren XC, Zhang ZC, Wong KY. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022;15(7):6574. https://doi.org/10.1007/s12274-022-4212-y.

    Article  CAS  Google Scholar 

  158. Xu Z, Xu LG, Liz-Marzán LM, Ma W, Kotov NA, Wang LB, Kuang H, Xu CL. Sensitive dtection of silver ions based on chiroplasmonic assemblies of nanoparticles. Adv Opt Mater. 2013;1(9):626. https://doi.org/10.1002/adom.201300148.

    Article  Google Scholar 

  159. Kuang H, Yin HH, Xing C, Xu CL. A sensitive DNAzyme-based chiral sensor for lead detection. Materials. 2013;6(11):5038. https://doi.org/10.3390/ma6115038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhu YY, Xu LJ, Ma W, Kuang H, Wang LB, Xu CL. A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods. ChemCommun. 2012;48(97):11889. https://doi.org/10.1039/c2cc36559f.

    Article  CAS  Google Scholar 

  161. Hao C, Xu L, Sun M, Zhang H, Kuang H, Xu C. Circularly polarized light triggers biosensing based on chiral assemblies. Chemistry. 2019;25(53):12235. https://doi.org/10.1002/chem.201901721.

    Article  CAS  PubMed  Google Scholar 

  162. Han JH, Lim YC, Kim RM, Lv J, Cho NH, Kim H, Namgung SD, Im SW, Nam KT. Neural-network-enabled design of a chiral plasmonic nanodimer for target-specific chirality sensing. ACS Nano. 2023;17(3):2306. https://doi.org/10.1021/acsnano.2c08867.

    Article  CAS  PubMed  Google Scholar 

  163. Lin YH, Che DQ, Guo H, Wang JS. Strong near-field coupling for enhancing plasmonic chirality toward single-molecule sensing. J Phys Chem C. 2022;126(34):14750. https://doi.org/10.1021/acs.jpcc.2c04757.

    Article  CAS  Google Scholar 

  164. Sun MZ, Qu AH, Hao CL, Wu XL, Xu LG, Xu CL, Kuang H. Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv Mater. 2018;30(50):1804241. https://doi.org/10.1002/adma.201804241.

    Article  CAS  Google Scholar 

  165. Zhao HY, Bian SH, Yang YF, Wu XP. Chiroplasmonic assemblies of gold nanoparticles as a novel method for sensitive detection of alpha-fetoprotein. Microchim Acta. 2017;184(6):1855. https://doi.org/10.1007/s00604-017-2207-2.

    Article  CAS  Google Scholar 

  166. Zhao Y, Yang Y, Zhao J, Weng P, Pang QF, Song QJ. Dynamic chiral nanoparticle assemblies and specific chiroplasmonic analysis of cancer cells. Adv Mater. 2016;28(24):4877. https://doi.org/10.1002/adma.201600369.

    Article  CAS  PubMed  Google Scholar 

  167. Zhao Y, Xu LG, Ma W, Wang LB, Kuang H, Xu CL, Kotov NA. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 2014;14(7):3809. https://doi.org/10.1021/nl501166m.

    Article  CAS  Google Scholar 

  168. Cai J, Hao CL, Sun MZ, Ma W, Xu CL, Kuang H. Chiral shell core–satellite nanostructures for ultrasensitive detection of mycotoxin. Small. 2018;14(13):1703931. https://doi.org/10.1002/smll.201703931.

    Article  CAS  Google Scholar 

  169. Hao JJ, Li YW, Xu XQ, Zhao FH, Pan RK, Li JZ, Liu HC, Wang K, Li JG, Zhu X, Delville MH, Zhang M, He TC, Cheng JJ. Metal-to-ligand charge transfer chirality sensing of d-Glucose assisted with GOX-based enzymatic reaction. Adv Mater Technol. 2020;5(7):2000138. https://doi.org/10.1002/admt.202000138.

    Article  CAS  Google Scholar 

  170. Ngamdee K, Ngeontae W. Circular dichroism glucose biosensor based on chiral cadmium sulfide quantum dots. Sens Actuators, B Chem. 2018;274:402. https://doi.org/10.1016/j.snb.2018.08.005.

    Article  CAS  Google Scholar 

  171. Wang XB, Wang QS, Chen YL, Li JG, Pan RK, Cheng X, Ng KW, Zhu X, He TC, Cheng JJ, Tang ZK, Chen R. Metal-to-ligand charge transfer chirality-based sensing of mercury ions. Photonics Res. 2021;9(2):213. https://doi.org/10.1364/prj.413592.

    Article  CAS  Google Scholar 

  172. Wang XB, Hao JJ, Cheng JJ, Li JZ, Miao J, Li RX, Li YW, Li JG, Liu YH, Zhu X, Liu YJ, Sun XW, Tang ZK, Delville M-H, He TC, Chen R. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. Nanoscale. 2019;11(19):9327. https://doi.org/10.1039/c8nr10506e.

    Article  CAS  PubMed  Google Scholar 

  173. Tedsana W, Tuntulani T, Ngeontae W. A circular dichroism sensor for Ni2+ and Co2+ based on L-cysteine capped cadmium sulfide quantum dots. Anal Chim Acta. 2015;867:1. https://doi.org/10.1016/j.aca.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  174. Ye HY, Tang YY, Li PF, Liao WQ, Gao JX, Hua XN, Cai H, Shi PP, You YM, Xiong RG. Metal-free three-dimensional perovskite ferroelectrics. Science. 2018;361(6398):151. https://doi.org/10.1126/science.aas9330.

    Article  CAS  PubMed  Google Scholar 

  175. Wang D, Zhao HM, Guo L, Zhang L, Zhao HB, Fang X, Li S, Wang G. Facile synthesis of CuO–Co3O4 prickly-sphere-like composite for non-enzymatic glucose sensors. Rare Met. 2022;41(6):1911. https://doi.org/10.1007/s12598-021-01939-2.

    Article  CAS  Google Scholar 

  176. Kuznetsova VA, Mates-Torres E, Prochukhan N, Marcastel M, Purcell-Milton F, O'brien J, Visheratina AK, Martinez-Carmona M, Gromova Y, Garcia-Melchor M,Gun'ko YK. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots. ACS Nano. 2019;13(11):13560. https://doi.org/10.1021/acsnano.9b07513

  177. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21(1):41. https://doi.org/10.1038/nbt764.

    Article  CAS  PubMed  Google Scholar 

  178. Chen HQ, Wang L, Liu Y, Wu WL, Liang AN, Zhang XL. Preparation of a novel composite particles and its application in the fluorescent detection of proteins. Anal Bioanal Chem. 2006;385(8):1457. https://doi.org/10.1007/s00216-006-0610-3.

    Article  CAS  PubMed  Google Scholar 

  179. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21(1):47. https://doi.org/10.1038/nbt767.

    Article  CAS  PubMed  Google Scholar 

  180. Yuan JP, Guo WW, Yin JY, Wang EK. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta. 2009;77(5):1858. https://doi.org/10.1016/j.talanta.2008.10.032.

    Article  CAS  PubMed  Google Scholar 

  181. Matsuura Y, Asami M, Ito S. Dual-channel recognition of Al3+ and Cu2+ ions using a chiral pyrene-based fluorescent sensor. New J Chem. 2022;46(17):7864. https://doi.org/10.1039/d2nj00801g.

    Article  CAS  Google Scholar 

  182. Shahrajabian M, Ghasemi F, Hormozi-Nezhad MR. Nanoparticle-based chemiluminescence for chiral discrimination of thiol-containing amino acids. Sci Rep. 2018;8(1):14011. https://doi.org/10.1038/s41598-018-32416-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhu FW, Wang J, Xie SQ, Zhu YQ, Wang LM, Xu JJ, Liao S, Ren JW, Liu Q, Yang H, Chen XQ. l-Pyroglutamic acid-modified CdSe/ZnS qantum dots: a new fluorescence-responsive chiral sensing platform for stereospecific molecular recognition. Anal Chem. 2020;92(17):12040. https://doi.org/10.1021/acs.analchem.0c02668.

    Article  CAS  PubMed  Google Scholar 

  184. Pundi A, Chang CJ, Chen J, Hsieh SR, Lee MC. A chiral carbazole based sensor for sequential “on-off-on” fluorescence detection of Fe3+ and tryptophan/histidine. Sens Actuators B Chem. 2021;328:129084. https://doi.org/10.1016/j.snb.2020.129084.

    Article  CAS  Google Scholar 

  185. Gao PL, Xie ZG, Zheng M. Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens Actuators B Chem. 2020;319:128265. https://doi.org/10.1016/j.snb.2020.128265.

    Article  CAS  Google Scholar 

  186. Wang YR, Qiao W, Zhao ZX, Zhao ZX, Li M. Preparation of two-dimensional porphyrin-based MOFs/derivatives and their potential in sensing and biomedical applications. Interdisciplinary Med. 2023;1(3):e20230010. https://doi.org/10.1002/inmd.20230010.

    Article  Google Scholar 

  187. Zhao L, Kuang X, Kuang R, Tong L, Liu ZX, Hou Y, Sun X, Wang ZL, Wei Q. MOF-based spramolecule helical nanomaterials: toward highly enantioselective electrochemical recognition of penicillamine. ACS Appl Mater Interfaces. 2020;12(1):1533. https://doi.org/10.1021/acsami.9b18183.

    Article  CAS  PubMed  Google Scholar 

  188. Kuang R, Zheng LY, Chi YH, Shi JM, Chen XX, Zhang CC. Highly efficient electrochemical recognition and quantification of amine enantiomers based on a guest-free homochiral MOF. RSC Adv. 2017;7(19):11701. https://doi.org/10.1039/c7ra00205j.

    Article  CAS  Google Scholar 

  189. Zhang XL, Hu JS, Wang B, Li ZQ, Xu SB, Chen YN, Ma XM. A chiral zinc(II) metal-organic framework as high selective luminescent sensor for detecting trace nitro explosives picric acid and Fe3+ ion. J Solid State Chem. 2019;269:459. https://doi.org/10.1016/j.jssc.2018.10.021.

    Article  CAS  Google Scholar 

  190. Zhao XL, Tian D, Gao Q, Sun HW, Xu J, Bu XH. A chiral lanthanide metal-organic framework for selective sensing of Fe(iii) ions. Dalton Trans. 2016;45(3):1040. https://doi.org/10.1039/c5dt03283k.

    Article  CAS  PubMed  Google Scholar 

  191. Tan G, Guo YQ, Zuo LY, Zhang K, Zhang YM, Zhang LL, Yu JJ, Feng X, Li B, Wang LY. Synthesis of zinc-based metal-organic framework as highly efficient photocatalyst for decomposition of organic dyes in aqueous solution. Rare Met. 2023;42(4):1205. https://doi.org/10.1007/s12598-022-02184-x.

    Article  CAS  Google Scholar 

  192. Shustova NB, Cozzolino AF, Dinca M. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks. J Am Chem Soc. 2012;134(48):19596. https://doi.org/10.1021/ja3103154.

    Article  CAS  PubMed  Google Scholar 

  193. Hou BY, Pan YT, Song PA. Metal-organic frameworks as promising flame retardants for polymeric materials. Microstructures. 2023;3(4):2023039. https://doi.org/10.20517/microstructures.2023.37

  194. Han ZS, Wang KY, Guo YF, Chen WJ, Zhang JL, Zhang XR, Siligardi G, Yang SH, Zhou Z, Sun PC, Shi W, Cheng P. Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nat Commun. 2019;10(1):5117. https://doi.org/10.1038/s41467-019-13090-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han ZS, Wang MM, Wang KY, Cheng P, Shi W. A bifunctional coordination-chain-based hydrogen-bonded framework for quantitative enantioselective sensing. Chem Eur J. 2023. https://doi.org/10.1002/chem.202301892.

    Article  PubMed  Google Scholar 

  196. Collins DJ, Zhou HC. Hydrogen storage in metal–organic frameworks. J Mater Chem A. 2007;17(30):3154. https://doi.org/10.1039/b702858j.

    Article  CAS  Google Scholar 

  197. Rowsell JL, Yaghi OM. Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed. 2005;44(30):4670. https://doi.org/10.1002/anie.200462786.

    Article  CAS  Google Scholar 

  198. Guo JW, Yang ZW, Liu XL, Zhang LW, Guo WB, Zhang J, Ding LH. 2D Co metal-organic framework nanosheet as an oxidase-like nanozyme for sensitive biomolecule monitoring. Rare Met. 2023;42(3):797. https://doi.org/10.1007/s12598-022-02179-8.

  199. Fan Y, Ou-Yang SB, Zhou D, Wei JC, Liao L. Biological applications of chiral inorganic nanomaterials. Chirality. 2022;34(5):760. https://doi.org/10.1002/chir.23428.

    Article  CAS  PubMed  Google Scholar 

  200. Hao CL, Wu XL, Sun MZ, Zhang HY, Yuan AM, Xu LG, Xu CL, Kuang H. Chiral core–shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. JACS. 2019;141(49):19373. https://doi.org/10.1021/jacs.9b09360.

    Article  CAS  Google Scholar 

  201. Yang BW, Chen Y, Shi JL. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881. https://doi.org/10.1021/acs.chemrev.8b00626.

    Article  CAS  PubMed  Google Scholar 

  202. Kim J, Kim HY, Song SY, Go SH, Sohn HS, Baik S, Soh M, Kim K, Kim D, Kim HC, Lee N, Kim BS, Hyeon T. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206. https://doi.org/10.1021/acsnano.8b08785.

    Article  CAS  PubMed  Google Scholar 

  203. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44. https://doi.org/10.1016/j.biocel.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  204. Hormann FM, Kerzig C, Chung TS, Bauer A, Wenger OS, Bach T. Triplet energy transfer from ruthenium complexes to chiral eniminium ions: enantioselective synthesis of cyclobutanecarbaldehydes by [2+2] photocycloaddition. Angew Chem Int Ed. 2020;59(24):9659. https://doi.org/10.1002/anie.202001634.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22272065), the Natural Science Foundation of Jiangsu Province (No. BK20211530), the Fundamental Research Funds for the Central Universities (No. JUSRP622018) and the Key Research and Development Special Project of Gao'an City, Jiangxi Province, China (No. 2023ZDYFZX06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhao or Wei Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, YC., Yeom, BJ., Zhao, Y. et al. Progress and prospects of chiral nanomaterials for biosensing platforms. Rare Met. 43, 2469–2497 (2024). https://doi.org/10.1007/s12598-023-02602-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02602-8

Keywords

Navigation