Skip to main content
Log in

Facile synthesis of CuO–Co3O4 prickly-sphere-like composite for non-enzymatic glucose sensors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the field of glucose sensors, the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot. In this paper, CuO–Co3O4 composite with a prickly-sphere-like morphology is prepared by the facile hydrothermal method for the non-enzymatic electrochemical glucose detection. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are used to analyze the structure, composition, and morphology of the material. In addition, the electrochemical catalytic performance of CuO–Co3O4 to glucose is obtained by cyclic voltammetry and chronoamperometry. The excellent electrochemical sensing performance may be attributed to the large number of catalytic sites in the prickly-sphere-like composite and the synergistic effect of Cu and Co. Under an applied voltage of 0.55 V, CuO–Co3O4 composite shows sensitivity to glucose (1503.45 μA·(mmol·L−1)−1·cm−2), a low detection limit (21.95 μmol·L−1), excellent selectivity, a high level of reproducibility, and good stability. This indicates that the CuO–Co3O4 composite has a broad prospect of non-enzymatic glucose sensing application.

Graphical abstract

摘要

在葡萄糖传感器领域, 开发廉价高效的电化学葡萄糖传感器是当前的研究热点。本文采用简便的水热法制备了具有多刺球形形貌的CuO–Co3O4复合材料, 用于非酶电化学葡萄糖检测。X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDX)和X射线光电子光谱(XPS)用于分析材料的结构、成分和形态。此外, 通过循环伏安法和计时电流法研究了CuO–Co3O4对葡萄糖的电化学催化性能。优异的电化学传感性能可能归因于多刺球形复合物中的大量催化位点以及铜和钴的协同作用。在0.55伏的外加电压下, CuO–Co3O4复合物显示出对葡萄糖的灵敏度(1503.45 μA·mM-1·cm-2)、低检测限(21.95 μM)、优异的选择性、高水平的再现性和良好的稳定性。这表明CuO–Co3O4复合材料在非酶葡萄糖传感领域具有广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bentsen MA, Mirzadeh Z, Schwartz MW. Revisiting how the brain senses glucose and why. Cell Metab. 2019;29(1):11.

    Article  CAS  Google Scholar 

  2. Taaltn N, Taaltn C, Karaku S, Kilisliolu A. Cu core shell nanosphere based electrochemical non-enzymatic sensing of glucose. Inorg Chem Commun. 2020;118:107991.

  3. Tobaldi DM, Espro C, Leonardi SG, Lajaunie L, Neri G. Photo-electrochemical properties of CuO–TiO2 heterojunctions for glucose sensing. J Mater Chem C. 2020;8(28):9529.

    Article  CAS  Google Scholar 

  4. Wu LN, Zhong JP, Waqas M, Jiang Z, Chen W. Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim Acta. 2019;318:837.

  5. Zhang CM, Zhang RZ, Gao XH, Cheng CF, Hou L, Li XK, Chen W. Small naked Pt nanoparticles confined in mesoporous shell of hollow carbon spheres for high-performance nonenzymatic sensing of H2O2 and glucose. ACS Omega. 2018;3(1):96.

    Article  CAS  Google Scholar 

  6. Inyoung L, Noya L, Wakako T, Kazunori I, Koji S. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Biosens Bioelectron. 2019;124:216.

  7. Wu L, Lu ZW, Ma Y, Zhang JJ, Mo GQ, Du HJ, Ye JS. Cu(II) metal-organic framework encapsulated in carbon paste electrode for high-performance non-enzymatic glucose sensing. Chin J Anal Chem. 2020;48(3):e20038.

    Article  Google Scholar 

  8. Zhang C, Zhang Z, Yang Q, Chen W. Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis. 2018;30(11):2504.

    Article  CAS  Google Scholar 

  9. Wang Z, Liu T, Yu Y, Asif M, Xu N, Xiao F, Liu H. Coffee ring–inspired approach toward oriented self-assembly of biomimetic murray MOFs as sweat biosensor. Small. 2018;14(45):1802670.

    Article  Google Scholar 

  10. Lee H, Song C, Hong YS, Min SK, Cho HR. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3(3):e1601314.

    Article  Google Scholar 

  11. Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron. 2017;91:276.

  12. Sun X, James TD. Glucose sensing in supramolecular chemistry. Chem Rev. 2015;115(15):8001.

    Article  CAS  Google Scholar 

  13. Song YY, Dai Z, Wei G, Xia XH. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem: Eur J. 2005;11(7):2177.

    Article  CAS  Google Scholar 

  14. Sharma S, Joshi P, Mehtab S, Zaidi GH, Singhal K, Siddiqi TI. Development of non-enzymatic cholesterol electrochemical sensor based on polyindole/tungsten carbide nanocomposite. J Anal Test. 2020;4(1):13.

    Article  Google Scholar 

  15. Cao W, Lin J, Muhammad F, Wang Q, Wang X, Lou P, Wei H. Porous Ruthenium selenide nanoparticle as a peroxidase mimic for glucose bioassay. J Anal Test. 2019;3(3):253.

    Article  Google Scholar 

  16. Fei X, Zhao F, Mei D, Mo Z, Zeng B. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron. 2009;24(12):3481.

    Article  Google Scholar 

  17. Jing L, Jiang S, Zhang H, Jiang J, Liu X. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta. 2012;709:47.

  18. Zhuang Z, Su X, Yuan H, Sun Q, Dan X, Choi M. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst. 2008;133(1):126.

    Article  CAS  Google Scholar 

  19. Kang X, Mai Z, Zou X, Cai P, Mo J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem. 2007;363(1):143.

    Article  CAS  Google Scholar 

  20. Ye J, Deng D, Wang Y, Luo L, Feng X. Well-aligned Cu@C nanocubes for highly efficient nonenzymatic glucose detection in human serum. Sens Actuators B. 2020;305:127473.

  21. Liu S, Zhao J, Qin L, Liu G, Zhang Q, Li J. Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose. J Mater Sci. 2020;55(1):337.

    Article  CAS  Google Scholar 

  22. Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron. 2013;45:206.

  23. Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2021;40(6):1477.

    Article  CAS  Google Scholar 

  24. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459.

    Article  CAS  Google Scholar 

  25. Feng D, Du L, Xing X, Wang C, Chen J, Zhu Z, Tian Y, Yang D. Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS Sens. 2021;6(3):733.

    Article  CAS  Google Scholar 

  26. Cao JL, Shao GS, Yan W, Liu Y, Yuan ZY. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal Commun. 2008;9(15):2555.

    Article  CAS  Google Scholar 

  27. Chen W, Gao X, Du C, Zhang C. Copper nanoclusters on carbon supports for the electrochemical oxidation and detection of hydrazine. ChemElectroChem. 2016;3(8):1266.

    Article  Google Scholar 

  28. Ahmad R, Vaseem M, Tripathy N, Hahn YB. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal Chem. 2013;85(21):10448.

    Article  CAS  Google Scholar 

  29. Chen J, Feng D, Wang C, Xing X, Du L, Zhu Z, Huang X, Yang D. Gas sensor detecting 3-hydroxy-2-butanone biomarkers: boosted response via decorating Pd nanoparticles onto the 010 facets of BiVO4 decahedrons. ACS Sens. 2020;5(8):2620.

    Article  CAS  Google Scholar 

  30. Xing X, Zhu Z, Du L, Feng D, Chen J, Li S, Yang D. Burrs-shelled SnO2@Al2O3 nanocables for detection of 3-hydroxy-2-butanone biomarkers. Appl Surf Sci. 2020;502:14406.

  31. Xing X, Du L, Feng D, Wang C, Yao M, Huang X, Zhang S, Yang D. Individual gas sensor detecting dual exhaled biomarkers via a temperature modulated n/p semiconducting transition. J Mater Chem A. 2020;8(48):26004.

    Article  CAS  Google Scholar 

  32. Cheng S, Gao X, Delacruz S, Chen C, Tang Z, Shi T, Carraro C, Maboudian R. In situ formation of metal–organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. J Mater Chem B. 2019;7(32):4990.

    Article  CAS  Google Scholar 

  33. Waqas M, Wu L, Tang H, Liu C, Chen W. Cu2O microspheres supported on sulfur-doped carbon nanotubes for glucose sensing. ACS Appl Nano Mater. 2020;3(5):4788.

    Article  CAS  Google Scholar 

  34. Wang ZY, Jiang SD, Duan CQ, Wang D, Luo SH, Liu YG. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    Article  CAS  Google Scholar 

  35. Qiao S, XX G. Chemical preparation and magnetic application of one-dimensional cobalt nanomaterials. Chin J Rare Met. 2020;44(7):769.

    Google Scholar 

  36. Wei C, Li X, Xiang W, Yu Z, Liu Q. MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity. Sens Actuators B. 2020;324:128773.

  37. Velmurgan S, Devasenathipathy R, Chen SM, Wang SF. A facile chemical synthesis of Cu2O nanocubes covered with Co3O4 nanohexagons for the sensitive detection of glucose. Electroanalysis. 2016;28(7):1547.

    Article  CAS  Google Scholar 

  38. Oldham KB. Analytical expressions for the reversible Randles-Sevcik function. J Electroanal Chem. 1979;105(2):373.

    Article  CAS  Google Scholar 

  39. Cheng S, Delacruz S, Chen C, Tang Z, Shi T, Carraro C, Maboudian R. Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. Sens Actuators B. 2019;298:126860.

  40. Jing Y, Tan W, Chen C, Tao Y, Yong Q, Yong K. Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater Sci Eng C. 2017;78:210.

  41. Huang Y, Tan Y, Feng C, Wang S, Wu H, Zhang G. Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine. Microchim Acta. 2019;186(1):1.

    Article  Google Scholar 

  42. Li R, Liu X, Wang H, Wu Y, Chan KC, Lu Z. Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. Electrochim Acta. 2019;299:470.

  43. Zhou QQ, Zhuo MP, Chen R, Wang SZ, Wang ZS, Zheng M, Liao LS. Controllable synthesis of barnyardgrass-like CuO/Cu2O heterostructure nanowires for highly sensitive non-enzymatic glucose sensors. J Mater Chem C. 2019;7(47):14874.

    Article  CAS  Google Scholar 

  44. Pei Y, Hu M, Tang X, Huang W, Xia Y. Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal Chim Acta. 2019;1059:49.

  45. Luo J, Wu J, Liu Z, Li Z, Deng L. Controlled synthesis of porous Co3O4 nanostructures for efficient electrochemical sensing of glucose. J Nanomater. 2019;2019:8346251.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62074018 and 62174015), the Developing Project of Science and Technology of Jilin Province (No. 20200301052RQ), the Project of Education Department of Jilin Province (No. JJKH20210831KJ) and the Science and Technology Foundation of State Grid Corporation of China (No. SGTJDK00DYJS2000148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Bin Zhao or Xuan Fang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhao, HM., Guo, L. et al. Facile synthesis of CuO–Co3O4 prickly-sphere-like composite for non-enzymatic glucose sensors. Rare Met. 41, 1911–1920 (2022). https://doi.org/10.1007/s12598-021-01939-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01939-2

Keywords

Navigation