Skip to main content

Advertisement

Log in

BaTiO3-based ceramics with high energy storage density

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

BaTiO3 ceramics are difficult to withstand high electric fields, so the energy storage density is relatively low, inhabiting their applications for miniaturized and lightweight power electronic devices. To address this issue, we added Sr0.7Bi0.2TiO3 (SBT) into BaTiO3 (BT) to destroy the long-range ferroelectric domains. Ca2+ was introduced into BT-SBT in the form of CaTiO3 (CT), which has the effect of inhibiting the movement of A-site defects to reduce dielectric loss and refining the grains to increase the breakdown field strength. In addition, we have increased the density and grain uniformity of ceramics by repeated rolling of the green samples through the viscous polymer processing (VPP), to further increase the breakdown electric field. The BT-SBT-CT ceramics exhibit the high recoverable energy storage density of 4.0 J·cm−3 under electric field of 480 kV·cm−1. Its recoverable energy storage density varies by less than 8% in the temperature range of 30–150 °C, indicating good temperature stability of the energy storage performance. In this work, the energy storage performance of barium titanate-based ceramics was greatly improved by transforming ferroelectrics into relaxor ferroelectrics and VPP method, which can bring new inspiration for the research of energy storage ceramics.

Graphical abstract

摘要

BaTiO3陶瓷难以承受高电场, 储能密度较低, 这不利于电力电子器件向小型化、轻量化的方向发展。为了解决这个问题, 我们将Sr0.7Bi0.2TiO3 (SBT) 添加到 BaTiO3 (BT) 中破坏其长程铁电畴。以CaTiO3 (CT) 的形式把Ca2+引入到BT-SBT中, 这可以通过抑制A位缺陷移动来降低介电损耗, 并且还可以通过细化晶粒来提高击穿场强。此外, 我们通过粘性聚合物加工 (VPP) 工艺对生坯样品进行反复辊压, 提高了陶瓷的密度和晶粒均匀性, 从而进一步提高击穿电场。BT-SBT-CT陶瓷在480 kV·cm−1的电场下表现出4.0 J·cm−3的高可恢复储能密度。其可恢复储能密度在30 ‒ 150 °C温度范围内的变化小于8%, 表明其储能性能具有良好的温度稳定性。本工作通过将铁电体转化为弛豫铁电体以及通过VPP工艺, 大大提高了钛酸钡基陶瓷的储能性能, 可为储能陶瓷的研究带来新的启发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shi P, Zhu X, Lou X, Yang B, Liu Q, Kong C, Yang S, He L, Kang R, Zhao J. Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties. Chem Eng J. 2022;428:132612. https://doi.org/10.1016/j.cej.2021.132612.

    Article  CAS  Google Scholar 

  2. Zhang MH, Qi JL, Liu YQ, Lan S, Luo ZX, Pan H, Lin YH. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization. Rare Met. 2022;41(3):730. https://doi.org/10.1007/s12598-021-01869-z.

    Article  CAS  Google Scholar 

  3. Hua YZ, Zhe S, Hua H, Yong YZ, He CM, Zhang SJ, Michael TL, Xing LH. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater. 2017;29(20):1601727. https://doi.org/10.1002/adma.201601727.

    Article  CAS  Google Scholar 

  4. Zhao L, Gao J, Liu Q, Zhang SJ, Li JF. Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping. ACS Appl Mater Interf. 2018;10(1):819. https://doi.org/10.1021/acsami.7b17382.

    Article  CAS  Google Scholar 

  5. Cui CW, Pu YP. Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics. J Mater Sci. 2018;53(13):9830. https://doi.org/10.1007/s10853-018-2282-8.

    Article  CAS  Google Scholar 

  6. Liu G, Li Y, Shi MQ, Yu LJ, Chen P, Yu K, Yan Y, Jin L, Wang DW, Gao JH. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram Int. 2019;45(15):19189. https://doi.org/10.1016/j.ceramint.2019.06.166.

    Article  CAS  Google Scholar 

  7. Qi H, Zuo RZ, Xie AW, Tian A, Fu J, Zhang Y, Zhang SJ. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201903877.

    Article  Google Scholar 

  8. Zhang L, Pang LX, Li WB, Zhou D. Extreme high energy storage efficiency in perovskite structured (1–x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04 ≤ x ≤ 0.16) ceramics. J Eur Ceram Soc. 2020;40(8):3343. https://doi.org/10.1016/j.jeurceramsoc.2020.03.015.

    Article  CAS  Google Scholar 

  9. Ye H, Yang F, Pan Z, Hu D, Lv X, Chen H, Wang F, Wang J, Li P, Chen J, Liu J, Zhai J. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater. 2021;203:116484. https://doi.org/10.1016/j.actamat.2020.116484.

    Article  CAS  Google Scholar 

  10. Zhou SY, Pu YP, Zhang XQ, Shi Y, Gao ZY, Feng Y, Shen GD, Wang XY, Wang DW. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem Eng J. 2022;427: 131684. https://doi.org/10.1016/j.cej.2021.131684.

    Article  CAS  Google Scholar 

  11. Li J, Shen Z, Chen X, Yang S, Zhou W, Wang M, Wang L, Kou Q, Liu Y, Li Q, Xu Z, Chang Y, Zhang S, Li F. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater. 2020. https://doi.org/10.1038/s41563-020-0704-x.

    Article  Google Scholar 

  12. Dahri A, Gagou Y, Abdelmoula N, Khemakhem H, El Marssi M. The structural, dielectric, electrocaloric and energy storage properties of lead-free Ba0.90Ca0.10Zr0.15Ti0.85O3. Ceram Int. 2022;48(3):3157. https://doi.org/10.1016/j.ceramint.2021.10.089.

    Article  CAS  Google Scholar 

  13. Wang J, Qiu G, Qian H, Liu Y, Luo J, Lyu Y. Optimized energy-storage performance in Mn-doped Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 lead-free dielectric thin films. Appl Surf Sci. 2022;571:151274. https://doi.org/10.1016/j.apsusc.2021.151274.

    Article  CAS  Google Scholar 

  14. Liu G, Li Y, Guo B, Tang MY, Dong J, Yu LJ, Yu K, Yan Y, Wang DW, Zhang LY, Zhang HB, He ZB, Jin L. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem Eng J. 2020;398:125625. https://doi.org/10.1016/j.cej.2020.125625.

    Article  CAS  Google Scholar 

  15. Kong X, Yang LT, Cheng ZX, Zhang SJ. Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors. Materials. 2020;13(1):180. https://doi.org/10.3390/ma13010180.

    Article  CAS  Google Scholar 

  16. Victor P, Ranjith R, Krupanidhi SB. Normal ferroelectric to relaxor behavior in laser ablated Ca-doped barium titanate thin films. J Appl Phys. 2003;94(12):7702. https://doi.org/10.1063/1.1618914.

    Article  CAS  Google Scholar 

  17. Nayak S, Venkateshwarlu S, Budisuharto AS, Jørgensen MRV, Borkiewicz O, Beyer KA, Pramanick A. Effect of A-site substitutions on energy storage properties of BaTiO3-BiScO3 weakly coupled relaxor ferroelectrics. J Am Ceram Soc. 2019;102(10):5919. https://doi.org/10.1111/jace.16449.

    Article  CAS  Google Scholar 

  18. Xu Y, Guo Y, Liu Q, Yin Y, Bai J, Lin L, Tian J, Tian Y. Enhanced energy density in Mn-doped (1–x)AgNbO3-xCaTiO3 lead-free antiferroelectric ceramics. J Alloys Compd. 2020;821: 153260. https://doi.org/10.1016/j.jallcom.2019.153260.

    Article  CAS  Google Scholar 

  19. Zhang LL, Wang XS, Yang W, Liu H, Yao X. Structure and relaxor behavior of BaTiO3-CaTiO3-SrTiO3 ternary system ceramics. J Appl Phys. 2008;104(1): 014104. https://doi.org/10.1063/1.2949253.

    Article  CAS  Google Scholar 

  20. Zhang N, Wu JG. Structure and property of lead-free (K, Na)NbO3-(Bi1/2Na1/2)ZrO3-CaTiO3 piezoelectric ceramics. J Mater Sci-Mater Electron. 2018;30(2):1663. https://doi.org/10.1007/s10854-018-0437-7.

    Article  CAS  Google Scholar 

  21. Su B, Button TW. A comparative study of viscous polymer processed ceramics based on aqueous and non-aqueous binder systems. J Mater Process Technol. 2009;209:153. https://doi.org/10.1016/j.jmatprotec.2008.01.046.

    Article  CAS  Google Scholar 

  22. Liu G, Li Y, Gao JH, Li DH, Yu LJ, Dong J, Zhang YT, Yan Y, Fan BY, Liu XY, Jin L. Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. J Alloys Compd. 2020;826: 154160. https://doi.org/10.1016/j.jallcom.2020.154160.

    Article  CAS  Google Scholar 

  23. Ren P, Ren D, Sun L, Yan F, Yang S, Zhao G. Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3. J Eur Ceram Soc. 2020;40(13):4495. https://doi.org/10.1016/j.jeurceramsoc.2020.05.076.

    Article  CAS  Google Scholar 

  24. Yuan Q, Li G, Yao F, Cheng S, Wang Y, Ma R, Mi S, Gu M, Wang K, Li J, Wang H. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy. 2018;52:203. https://doi.org/10.1016/j.nanoen.2018.07.055.

    Article  CAS  Google Scholar 

  25. Zhao P, Tang B, Si F, Yang C, Li H, Zhang S. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency. J Eur Ceram Soc. 1938;40(5):1938. https://doi.org/10.1016/j.jeurceramsoc.2020.01.006.

    Article  CAS  Google Scholar 

  26. Chen Z, Bai X, Wang H, Du J, Bai W, Li L, Wen F, Zheng P, Wu W, Zheng L, Zhang Y. Achieving high-energy storage performance in 0.67Bi1-xSmxFeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics. Ceram Int. 2020;46(8):11549. https://doi.org/10.1016/j.ceramint.2020.01.181.

    Article  CAS  Google Scholar 

  27. Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, Xing S, Zhai J, Fu Q, Liu J. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics. J Mater Chem C. 2020;8(2):591. https://doi.org/10.1039/c9tc05528b.

    Article  CAS  Google Scholar 

  28. Lu D, Liang Y. Valence states and dielectric properties of fine-grained BaTiO3 ceramics co-doped with double valence-variable europium and chromium. Ceram Int. 2018;44:14717. https://doi.org/10.1016/j.ceramint.2018.05.100.

    Article  CAS  Google Scholar 

  29. Shao T, Du H, Ma H, Qu S, Wang J, Wang J, Wei X, Xu Z. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A. 2017;5(2):554. https://doi.org/10.1039/c6ta07803f.

    Article  CAS  Google Scholar 

  30. Oprea B, Radu T, Simon S. XPS investigation of atomic environment changes on surface of B2O3-Bi2O3 glasses. J Non-Cryst Solids. 2013;379:35. https://doi.org/10.1016/j.jnoncrysol.2013.07.024.

    Article  CAS  Google Scholar 

  31. Gong Y, Deng W, Zhang W, Yatongchai C, Zou Y, Buchanan RC. Effect of a BaO-CuO-Bi2O3-B2O3 glass flux, and its processing on the dielectric properties of BaTiO3. Ceram Int. 2015;41(1):671. https://doi.org/10.1016/j.ceramint.2014.08.121.

    Article  CAS  Google Scholar 

  32. Luo Z, Hao H, Chen C, Zhang L, Yao Z, Cao M, Emmanuel M, Liu H. Dielectric and anti-reduction properties of (1-x)BaTiO3-xBi(Zn0.5Y0.5)O2.75 ceramics for BME-MLCC application. J Alloys Compd. 2019;794:358. https://doi.org/10.1016/j.jallcom.2019.04.277.

    Article  CAS  Google Scholar 

  33. Ma Z, Su Q, Zhu J, Meng X, Zhao Y, Xin G, Li Y, Hao X. Optimization of energy-storage properties for lead-free relaxor-ferroelectric (1–x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ceramics. J Mater Sci. 2022;57(1):217. https://doi.org/10.1007/s10853-021-6684-6.

    Article  CAS  Google Scholar 

  34. Krishna PSR, Pandey D, Tiwari VS, Chakravarthy R, Dasannacharya BA. Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: a rietveld analysis. Appl Phys Lett. 1993;62(3):231. https://doi.org/10.1063/1.108974.

    Article  CAS  Google Scholar 

  35. Burns G, Dacol FH. Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 1983;48(10):853. https://doi.org/10.1016/0038-1098(83)90132-1.

    Article  CAS  Google Scholar 

  36. Ravikiran U, Zacharias E, Rajashekhar G, Sarah P. Impedance spectroscopy studies on samarium and sodium substituted strontium bismuth titanate (SBTi). Ceram Int. 2019;45(12):15188. https://doi.org/10.1016/j.ceramint.2019.05.003.

    Article  CAS  Google Scholar 

  37. Song Z, Liu HX, Hao H, Zhang SJ, Cao MH, Yao ZH, Wang ZJ, Hu W, Shi YT, Hu BY. The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics by varying grain sizes. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(4):609. https://doi.org/10.1109/TUFFC.2014.006927.

    Article  Google Scholar 

  38. Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, Alikin DO, Shur VY, Feng Y, Xu Z, Wei X. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy. 2020;67:104264. https://doi.org/10.1016/j.nanoen.2019.104264.

    Article  CAS  Google Scholar 

  39. Li W, Zhou D, Pang L, Xu R, Guo H. Novel barium titanate based capacitors with high energy density and fast discharge performance. J Mater Chem A. 2017;5(37):19607. https://doi.org/10.1039/c7ta05392d.

    Article  CAS  Google Scholar 

  40. Liu G, Li Y, Dong J, Yu LJ, Zhang YT, Hu JZ, Gao JH, He ZB. Microstructure evolution, mechanism of electric breakdown strength, and dielectric energy storage performance of CuO modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free bulk ceramics. Ceram Int. 2019;45(17):21544. https://doi.org/10.1016/j.ceramint.2019.07.148.

    Article  CAS  Google Scholar 

  41. Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C. 2018;6(31):8528. https://doi.org/10.1039/c8tc03003k.

    Article  CAS  Google Scholar 

  42. Zhao Q, Wang X, Gong H, Liu B, Luo B, Li L. The properties of Al2O3 coated fine-grain temperature stable BaTiO3-based ceramics sintered in reducing atmosphere. J Am Ceram Soc. 2018;101(3):1245. https://doi.org/10.1111/jace.15287.

    Article  CAS  Google Scholar 

  43. Lu X, Zhang L, Talebinezhad H, Tong Y, Cheng ZY. Effects of CuO additive on the dielectric property and energy-storage performance of BaTiO3-SiO2 ceramic-glass composite. Ceram Int. 2018. https://doi.org/10.1016/j.ceramint.2018.06.139.

    Article  Google Scholar 

  44. Liu G, Zhang LY, Wu QK, Wang ZY, Li Y, Li DQ, Liu HB, Yan Y. Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J Mater Sci - Mater Electron. 2018;29:18859. https://doi.org/10.1007/s10854-018-0011-3.

    Article  CAS  Google Scholar 

  45. Liu B, Wu Y, Huang YH, Song KX, Wu YJ. Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J Mater Sci. 2018;54(6):4511. https://doi.org/10.1007/s10853-018-3170-y.

    Article  CAS  Google Scholar 

  46. Li F, Zhou M, Zhai J, Shen B, Zeng H. Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J Eur Ceram Soc. 2018;38:4646. https://doi.org/10.1016/j.jeurceramsoc.2018.06.038.

    Article  CAS  Google Scholar 

  47. Khalf AZ, Hall DA. Influence of barium borosilicate glass on microstructure and dielectric properties of (Ba, Ca)(Zr, Ti)O3 ceramics. J Eur Ceram Soc. 2018;38:4422. https://doi.org/10.1016/j.jeurceramsoc.2018.06.008.

    Article  CAS  Google Scholar 

  48. Yang H, Yan F, Lin Y, Wang T, Wang F, Wang Y, Guo L, Tai W, Wei H. Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J Eur Ceram Soc. 2017;37(10):3303. https://doi.org/10.1016/j.jeurceramsoc.2017.03.071.

    Article  CAS  Google Scholar 

  49. Liu B, Wang X, Zhang R, Li L. Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J Am Ceram Soc. 2017;100(8):3599. https://doi.org/10.1111/jace.14802.

    Article  CAS  Google Scholar 

  50. Li W, Zhou D, Pang L. Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett. 2017;110(13):132902. https://doi.org/10.1063/1.4979467.

    Article  CAS  Google Scholar 

  51. Wu L, Wang X, Li L. Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability. J Alloys Compd. 2016;688:113. https://doi.org/10.1016/j.jallcom.2016.07.057.

    Article  CAS  Google Scholar 

  52. Wang T, Jin L, Li C, Hu Q, Wei X, Lupascu D. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc. 2015;98(2):559. https://doi.org/10.1111/jace.13325.

    Article  CAS  Google Scholar 

  53. Liu B, Wang X, Zhao Q, Li L, Zhang S. Improved energy storage properties of fine-crystalline BaTiO3 ceramics by coating powders with Al2O3 and SiO2. J Am Ceram Soc. 2015;98(8):2641. https://doi.org/10.1111/jace.13614.

    Article  CAS  Google Scholar 

  54. Hu Q, Bian J, Zelenovskiy PS, Tian Y, Jin L, Wei X, Xu Z, Shur VY. Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic. J Appl Phys. 2018;124:054101. https://doi.org/10.1063/1.5030381.

    Article  CAS  Google Scholar 

  55. Zhan D, Xu Q, Huang D, Liu H, Chen W, Zhang F. Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics. J Phys Chem Solids. 2018;114:220. https://doi.org/10.1016/j.jpcs.2017.10.038.

    Article  CAS  Google Scholar 

  56. Yuan Q, Cui J, Wang Y, Ma R, Wang H. Significant enhancement in breakdown strength and energy density of the BaTiO3/BaTiO3@SiO2 layered ceramics with strong interface blocking effect. J Eur Ceram Soc. 2017;37(15):4645. https://doi.org/10.1016/j.jeurceramsoc.2017.06.028.

    Article  CAS  Google Scholar 

  57. Ma J, Chen X, Ouyang W, Wang J, Li H, Fang J. Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram Int. 2018;44(4):4436. https://doi.org/10.1016/j.ceramint.2017.12.044.

    Article  CAS  Google Scholar 

  58. Liu S, Xie Q, Zhang L, Zhao Y, Wang X, Mao P, Wang J, Lou X. Tunable electrocaloric and energy storage behavior in the Ce, Mn hybrid doped BaTiO3 ceramics. J Eur Ceram Soc. 2018;38(14):4664. https://doi.org/10.1016/j.jeurceramsoc.2018.06.020.

    Article  CAS  Google Scholar 

  59. Wan J, Pu Y, Hui C, Cui C, Guo Y. Synthesis and characterizations of NaNbO3 modified 0.92BaTiO3–0.08K0.5Bi0.5TiO3 ceramics for energy storage applications. J Mater Sci-Mater Electron. 2018;29(6):5158. https://doi.org/10.1007/s10854-017-8480-3.

    Article  CAS  Google Scholar 

  60. Luo Q, Li X, Yao Z, Zhang L, Xie J, Hao H, Cao M, Manan A, Liu H. The role of dielectric permittivity in the energy storage performances of ultrahigh-permittivity (SrxBa1-x)(Ti0.85Sn0.15)O3 ceramics. Ceram Int. 2018;44(5):5304. https://doi.org/10.1016/j.ceramint.2017.12.146.

    Article  CAS  Google Scholar 

  61. Zhou MX, Liang RH, Zhou ZY, Xu CH, Nie X, Chen XF, Dong XL. High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater Res Bull. 2018;98:166. https://doi.org/10.1016/j.materresbull.2017.10.005.

    Article  CAS  Google Scholar 

  62. Zhou MX, Liang RHY, Dong XL. Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage. Ceram Int. 2019;45(3):3582. https://doi.org/10.1016/j.ceramint.2018.11.018.

    Article  CAS  Google Scholar 

  63. Liu X, Yang H, Yan F, Qin Y, Lin Y, Wang T. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J Alloys Compd. 2019;778:97. https://doi.org/10.1016/j.jallcom.2018.11.106.

    Article  CAS  Google Scholar 

  64. Jiang X, Hao H, Zhang S, Lv J, Cao M, Yao Z, Liu H. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J Eur Ceram Soc. 2019;39(4):1103. https://doi.org/10.1016/j.jeurceramsoc.2018.11.025.

    Article  CAS  Google Scholar 

  65. Si F, Tang B, Fang Z, Zhang S. Structural and dielectric relaxor properties of (1–x)BaTiO3-xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications. J Mater Sci-Mater Electron. 2019;30(3):2772. https://doi.org/10.1007/s10854-018-0553-4.

    Article  CAS  Google Scholar 

  66. Zhu C, Wang X, Zhao Q, Cai Z, Cen Z, Li L. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. J Eur Ceram Soc. 2019;39(4):1142. https://doi.org/10.1016/j.jeurceramsoc.2018.11.034.

    Article  CAS  Google Scholar 

  67. Chen G, Fan T, Yang H, Fu C, Gao R, Deng X, Wang Z, Fan P, Cai W. Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics. Appl Phys A. 2019;125(6):443. https://doi.org/10.1007/s00339-019-2729-z.

    Article  CAS  Google Scholar 

  68. Si F, Tang B, Fang Z, Li H, Zhang S. Enhanced energy storage and fast charge-discharge properties of (1–x)BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics. Ceram Int. 2019;45(14):17580. https://doi.org/10.1016/j.ceramint.2019.05.323.

    Article  CAS  Google Scholar 

  69. Li D, Lin Y, Liu X, Yang H, Wang T. Influence of SnO2 additive on the energy storage properties of Ba0.65(Bi0.5Na0.5)0.35TiO3-SrY0.5Nb0.5O3 relaxor ferroelectrics. Ceram Int. 2019;45(17):22625. https://doi.org/10.1016/j.ceramint.2019.07.295.

    Article  CAS  Google Scholar 

  70. Qiu Y, Lin Y, Liu X, Yang H. Bi(Mg2/3Nb1/3)O3 addition inducing high recoverable energy storage density in lead-free 0.65BaTiO3–0.35Bi0.5Na0.5TiO3 bulk ceramics. J Alloys Compd. 2019;797:348. https://doi.org/10.1016/j.jallcom.2019.05.092.

    Article  CAS  Google Scholar 

  71. Li W, Zhou D, Xu R, Pang L, Reaney IM. BaTiO3-Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS Appl Energy Mater. 2018;1(9):5016. https://doi.org/10.1021/acsaem.8b01001.

    Article  CAS  Google Scholar 

  72. Lin Y, Li D, Zhang M, Zhan S, Yang Y, Yang H, Yuan Q. Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl Mater Interf. 2019;11(40):36824. https://doi.org/10.1021/acsami.9b10819.

    Article  CAS  Google Scholar 

  73. Jayakrishnan AR, Alex KV, Kamakshi K, Silva JPB, Sekhar KC, Gomes MJM. Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3. J Mater Sci Mater Electron. 2019;30(21):19374. https://doi.org/10.1007/s10854-019-02299-5.

    Article  CAS  Google Scholar 

  74. Wang XW, Zhang BH, Feng G, Sun LY, Hu YC, Shang SY, Yin SQ, Shang J, Wang XE. Enhanced energy storage performance of Ba0.94(Bi0.5K0.5)0.06Ti0.85Zr0.15O3 relaxor ceramics by two-step sintering method. Mater Res Bull. 2019;114:74. https://doi.org/10.1016/j.materresbull.2019.02.004.

    Article  CAS  Google Scholar 

  75. Yi X, Ji C, Chen G, Yang H, Yong H, Fu C, Cai W, Gao R, Fan T, Wang Z, Deng X. Effects of sintering method and BiAlO3 dopant on dielectric relaxation and energy storage properties of BaTiO3-BiYbO3 ceramics. Physica Status Solidi (a). 2019;217(2):1900721. https://doi.org/10.1002/pssa.201900721.

    Article  CAS  Google Scholar 

  76. Wang XW, Zhang BH, Shi YC, Li YY, Manikandan M, Shang SY, Shang J, Hu YC, Yin SQ. Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J Appl Phys. 2012;127:074103. https://doi.org/10.1063/1.5138948.

    Article  CAS  Google Scholar 

  77. Wang H, Cao M, Liu M, Hao H, Yao Z, Liu H. Enhanced energy storage properties of fine-crystalline Ba0.4Sr0.6TiO3 ceramics by coating powders with B2O3-Al2O3-SiO2. J Alloys Compd. 2020;826:153891. https://doi.org/10.1016/j.jallcom.2020.153891.

    Article  CAS  Google Scholar 

  78. Si F, Tang B, Fang Z, Li H, Zhang S. A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J Alloys Compd. 2020;819: 153004. https://doi.org/10.1016/j.jallcom.2019.153004.

    Article  CAS  Google Scholar 

  79. Lv J, Hao H, Jiang X, Liu Z, Emmanuel M, Cao M, Yao Z, Liu H. Defect structure evolution and electrical properties of BaTiO3-based ferroelectric ceramics. J Am Ceram Soc. 2020;103(9):5129. https://doi.org/10.1111/jace.17220.

    Article  CAS  Google Scholar 

  80. Kumar R, Singh I, Meena R, Asokan K, Birajdar B, Patnaik S. Effect of La-doping on dielectric properties and energy storage density of lead-free Ba(Ti0.95Sn0.05)O3 ceramics. Mater Res Bull. 2020;123:110694. https://doi.org/10.1016/j.materresbull.2019.110694.

    Article  CAS  Google Scholar 

  81. Jin Q, Zhao L, Cui B, Wang J, Ma H, Zhang R, Liu Y, Zhang X. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core–shell structural design. J Mater Chem C. 2020;8(15):5248. https://doi.org/10.1039/d0tc00179a.

    Article  CAS  Google Scholar 

  82. Jayakrishnan AR, Karthik Yadav PV, Silva JPB, Sekhar KC. Microstructure tailoring for enhancing the energy storage performance of 0.98[0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3]-0.02BiZn1/2Ti1/2O3 ceramic capacitors. J Sci: Adv Mater Devices. 2020;5(1):119. https://doi.org/10.1016/j.jsamd.2019.12.001.

    Article  Google Scholar 

  83. Jain A, Wang YG, Wang N, Wang FL. Critical role of CuO doping on energy storage performance and electromechanical properties of Ba0.8Sr0.1Ca0.1Ti0.9Zr0.1O3 ceramics. Ceram Int. 2020;46(11):18800. https://doi.org/10.1016/j.ceramint.2020.04.198.

    Article  CAS  Google Scholar 

  84. Jain A, Wang YG, Wang N, Li Y, Wang FL. Synergetic effect of BiYb0.9Sc0.1O3 substitution on the energy storage performance of Ba0.90Sr0.10Ti0.90Zr0.10O3 ferroelectric ceramic. J Phys D Appl Phys. 2020;53(23):235301. https://doi.org/10.1088/1361-6463/ab7bb1.

    Article  CAS  Google Scholar 

  85. Huang Y, Zhao C, Wu B, Wu J. Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl Mater Interf. 2020;12(21):23885. https://doi.org/10.1021/acsami.0c03677.

    Article  CAS  Google Scholar 

  86. Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Li J, Ren X. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater Interf. 2020;12(27):30289. https://doi.org/10.1021/acsami.0c02832.

    Article  CAS  Google Scholar 

  87. Chen X, Li X, Sun J, Sun C, Shi J, Pang F, Zhou H. Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics. Appl Phys A. 2020;126(2):146. https://doi.org/10.1007/s00339-020-3326-x.

    Article  CAS  Google Scholar 

  88. Chen X, Li X, Sun J, Sun C, Shi J, Pang F, Zhou H. Simultaneously achieving ultrahigh energy storage density and energy efficiency in barium titanate based ceramics. Ceram Int. 2020;46(3):2764. https://doi.org/10.1016/j.ceramint.2019.09.265.

    Article  CAS  Google Scholar 

  89. Liu G, Li Y, Wang ZY, Zhang LY, Chen P, Wei FB, Wang YF, Yu K, Yan Y, Jin L, He ZB. Dielectric, ferroelectric and energy storage properties of lead-free (1–x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceram Int. 2019;45(12):15556. https://doi.org/10.1016/j.ceramint.2019.05.061.

    Article  CAS  Google Scholar 

  90. Li Y, Zhang L, Yu LJ, Li DQ, Meng HY, Ai Q, Hu JZ, Jin L, Gao JH, Liu G. Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free ceramics. Ceram Int. 2020;46(1):8. https://doi.org/10.1016/j.ceramint.2019.08.111.

    Article  CAS  Google Scholar 

  91. Li Y, Liu Y, Tang MY, Lv JW, Chen FK, Li Q, Yan Y, Wu F, Jin L, Liu G. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chem Eng J. 2021;419:129673. https://doi.org/10.1016/j.cej.2021.129673.

    Article  CAS  Google Scholar 

  92. Han K, Luo N, Chen Z, Ma L, Chen X, Feng Q, Hu C, Zhou H, Wei Y, Toyohisa F. Simultaneously optimizing both energy storage density and efficiency in a novel lead-free relaxor antiferroelectrics. J Eur Ceram Soc. 2020;40(10):3562. https://doi.org/10.1016/j.jeurceramsoc.2020.03.070.

    Article  CAS  Google Scholar 

  93. Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A. 2020;8(17):8352. https://doi.org/10.1039/d0ta02285c.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2021YFB3800602); the National Nature Science Foundation of China-NSAF (No. 52172129); the Natural Science Foundation of Shaanxi Province (Nos. 2021GXLH-Z-025 and 2020JM-004); Beilin 2021 Applied Technology Research and Development Project (No. GX2118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Fei Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 924 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, MY., Zhang, ZG. et al. BaTiO3-based ceramics with high energy storage density. Rare Met. 42, 1261–1273 (2023). https://doi.org/10.1007/s12598-022-02175-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02175-y

Keywords

Navigation