Skip to main content

Advertisement

Log in

Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, MgO-doped BaTiO3 (BT) ceramics were prepared by a conventional solid-state sintering method. Perovskite-structure was identified by an X-ray diffraction method. Relatively high volume density and relative density were achieved with appropriate MgO contents. With MgO doping, the temperature stability of the dielectric constant of BT samples was drastically improved when the temperature is below their Curie temperatures. It is very interesting that both the energy storage density and breakdown electric field are enhanced by MgO doping compared to that of undoped BT. Particularly, a high energy storage density (Wc) of 0.9 J/cm3 can be achieved at 130 kV/cm with a high energy storage efficiency (η) of 73.3% in 0.25 wt% MgO doped composition. The detailed investigation and analysis can be found in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7(3), 339 (1972)

    Article  CAS  Google Scholar 

  2. N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29(1), 253 (1996)

    Article  CAS  Google Scholar 

  3. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, Structure, dielectric, ferroelectric, and energy density properties of (1−x)BZT−xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48(5), 2151–2157 (2013)

    Article  CAS  Google Scholar 

  4. T. Wang, X. Wei, Q. Hu, L. Jin, Z. Xu, Y. Feng, Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B 178(16), 1081–1086 (2013)

    Article  CAS  Google Scholar 

  5. X. Wei, H. Yan, T. Wang, Q. Hu, G. Viola, S. Grasso, Q. Jiang, L. Jin, Z. Xu, M.J. Reece, Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. J. Appl. Phys. 113(2), 024103 (2013)

    Article  Google Scholar 

  6. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34(5), 1209–1217 (2014)

    Article  CAS  Google Scholar 

  7. T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, X. Wei, Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett. 137, 79–81 (2014)

    Article  CAS  Google Scholar 

  8. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416–420 (2015)

    Article  CAS  Google Scholar 

  9. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)

    Article  CAS  Google Scholar 

  10. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.-H. Kim, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Compd. 682, 302–310 (2016)

    Article  CAS  Google Scholar 

  11. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4(44), 17279–17287 (2016)

    Article  CAS  Google Scholar 

  12. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A 4(36), 13778–13785 (2016)

    Article  CAS  Google Scholar 

  13. Q. Hu, T. Wang, L. Zhao, L. Jin, Z. Xu, X. Wei, Dielectric and energy storage properties of BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramic: influence of glass addition and biasing electric field. Ceram. Int. 43(1), 35–39 (2017)

    Article  CAS  Google Scholar 

  14. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5(2), 554–563 (2017)

    Article  CAS  Google Scholar 

  15. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5(33), 17525–17531 (2017)

    Article  CAS  Google Scholar 

  16. L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)

    Article  CAS  Google Scholar 

  17. F. Li, L. Wang, L. Jin, D. Lin, J. Li, Z. Li, Z. Xu, S. Zhang, Piezoelectric activity in Perovskite ferroelectric crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(1), 18–32 (2015)

    Article  Google Scholar 

  18. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)

    Article  Google Scholar 

  19. D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 3(1), 5–13 (2010)

    Article  CAS  Google Scholar 

  20. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95(1), 1–26 (2012)

    Article  CAS  Google Scholar 

  21. F. Li, L. Jin, R. Guo, High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Appl. Phys. Lett. 105(23), 232903 (2014)

    Article  Google Scholar 

  22. L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, G. Liu, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl. Mater. Interfaces 8(45), 31109–31119 (2016)

    Article  CAS  Google Scholar 

  23. Q. Hu, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 43(15), 12828–12834 (2017)

    Article  CAS  Google Scholar 

  24. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)

    Article  CAS  Google Scholar 

  25. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92(1), 110–118 (2009)

    Article  CAS  Google Scholar 

  26. D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, Structural and dielectric properties in (1 − x)BaTiO3–xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J. Am. Ceram. Soc. 96(7), 2197–2202 (2013)

    Article  CAS  Google Scholar 

  27. J. Jeong, Y.H. Han, Electrical properties of MgO-doped BaTiO3. Phys. Chem. Chem. Phys. 5(11), 2264–2267 (2003)

    Article  CAS  Google Scholar 

  28. J.S. Park, Y.H. Han, Effects of MgO coating on microstructure and dielectric properties of BaTiO3. J. Eur. Ceram. Soc. 27(2), 1077–1082 (2007)

    Article  CAS  Google Scholar 

  29. J.S. Park, M.H. Yang, Y.H. Han, Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO3. Mater. Chem. Phys. 104(2), 261–266 (2007)

    Article  CAS  Google Scholar 

  30. Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35(5), 1469–1476 (2015)

    Article  CAS  Google Scholar 

  31. B. Jaffe, W.R.J. Cook, H. Jaffe, Piezoelectric Ceramics (Acadmic Press, New York, 1971)

    Google Scholar 

  32. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76(3–4), 241–267 (1987)

    Article  CAS  Google Scholar 

  33. Z.G. Ye, Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. Key Eng. Mater. 155(1), 81–122 (1998)

    Article  Google Scholar 

  34. Q. Hu, J. Bian, L. Jin, Y. Zhuang, Z. Huang, G. Liu, V.Y. Shur, Z. Xu, X. Wei, Debye-like relaxation behavior and electric field induced dipole re-orientation of the 0.6BaTiO3-0.4Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 44(1), 922–930 (2018)

    Article  CAS  Google Scholar 

  35. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41(1), 31–52 (2006)

    Article  CAS  Google Scholar 

  36. F. Li, L. Jin, Z. Xu, S. Zhang, Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1(1), 011103 (2014)

    Article  Google Scholar 

  37. C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, G. Wang, High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics. J. Appl. Phys. 120(7), 074107 (2016)

    Article  Google Scholar 

  38. M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107(3), 034106 (2010)

    Article  Google Scholar 

  39. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121(8), 084103 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (51672226, 51502248, 11704242); Natural Science Foundation of Shanghai, China (17ZR1447200); Fundamental Research Funds for the Central Universities (XDJK2017D013, XDJK2017D021); National College Student innovation and Entrepreneurship Program of Southwest University (201710635057, 201710635015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Yan Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhang, L., Wu, Q. et al. Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J Mater Sci: Mater Electron 29, 18859–18867 (2018). https://doi.org/10.1007/s10854-018-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0011-3

Navigation