Skip to main content
Log in

Effect of Nonthermal Processing on the Structural and Techno-Functional Properties of Bovine α-Lactalbumin

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Bovine α-lactalbumin (α-LA) is a small (MW 14,178) globular whey protein with good nutritional and functional properties. Its increased availability as a purified protein has made easier the study of the effects of different processing treatments on its structural and techno-functional properties. The consumer demand for fresh foods with longer shelf-life and good sensory qualities led to extensive research in the field of the so-called nonthermal technologies to inactivate microorganisms and enzymes. However, these technologies have also acquired great importance in the field of modification and improvement of structural, physicochemical, and techno-functional properties of food proteins. In this review, the effects of some nonthermal processes (high hydrostatic pressure, pulsed electric fields, high-intensity ultrasound, ultraviolet light, and atmospheric pressure cold plasma) on the properties of α-LA are examined, and the research needs in this field are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Farrell HM Jr, Jiménez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE (2004) Nomenclature of the proteins of cows’ milk—sixth revision. J Dairy Sci 87:1641–1674

    Article  CAS  PubMed  Google Scholar 

  2. Layman DK, Lönnerdal B, Fernstrom JD (2018) Applications for α-lactalbumin in human nutrition. Nutr Revs 76:444–460

    Article  Google Scholar 

  3. Velusamy V, Palaniappan L (2011) Compositional analysis of α-lactalbumin. Am J Biochem Molec Biol 1(2):106–120

    Article  Google Scholar 

  4. Permyakov EA (2020) α-Lactalbumin, amazing calcium-binding protein. Biomolecules 10:1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuwajima K (1996) The molten globule state of α-lactalbumin. FASEB J 10:102–109

    Article  CAS  PubMed  Google Scholar 

  6. Reyes-Portillo KA, Quintero-Lira A, Piloni-Martini J, Fajardo-Espinoza FS, Hernández-Sánchez H, Soto-Simentel S (2021) Using BAMLET complex in a functional spreadable cheese elaborated with bovine colostrum. J Food Sci Technol 58(9):3465–3472

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pellegrini A, Thomas U, Bramaz N, Hunziker P, von Fellenberg R (1999) Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim Biophys Acta 1426:439–448

    Article  CAS  PubMed  Google Scholar 

  8. Stӑnciuc N, Râpeanu G, Bahrim G, Aprodu I (2012) pH and heat-induced structural changes of bovine apo-α-lactalbumin. Food Chem 131:956–963

    Article  Google Scholar 

  9. Stӑnciuc N, Râpeanu G (2010) An overview of bovine α-lactalbumin structure and functionality. Ann Univ Dunarea de Jos of Galati Fasc VI Food Technol 34(2):82–93

    Google Scholar 

  10. Kamau SM, Cheison SC, Chen W, Liu X-M, Lu R-R (2010) Alpha-lactalbumin: its production technologies and bioactive peptides. Compr Rev Food Sci Food Saf 9:197–212

    Article  CAS  Google Scholar 

  11. Hendrix T, Griko YV, Privalov PL (2000) A calorimetric study of the influence of calcium on the stability of bovine α-lactalbumin. Biophys Chem 84:27–34

    Article  CAS  PubMed  Google Scholar 

  12. Wehbi Z, Pérez MD, Sánchez L, Pocovi C, Barbana C, Calvo M (2005) Effect of heat treatment on denaturation of bovine α-lactalbumin: determination of kinetic and thermodynamic parameters. J Agric Food Chem 53:9730–9736

    Article  CAS  PubMed  Google Scholar 

  13. Chaplin LC, Lyster RL (1986) Irreversible heat denaturation of bovine α-lactalbumin. J Dairy Res 53:249–258

    Article  CAS  Google Scholar 

  14. Haller N, Kulozik U (2020) Continuous centrifugal separation of selectively precipitated α-lactalbumin. Int Dairy J 101:104566

    Article  CAS  Google Scholar 

  15. Clark JP (2009) Case studies in food engineering. Springer Science+Business Media, LLC, New York, pp 129 – 145.

  16. Barbosa-Cánovas GV, Donsi F, Yildiz S, Candoğan K, Pokhrel PR, Guadarrama-Lezama AY (2022) Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. Food Eng Revs 14:63–99

    Article  Google Scholar 

  17. Jadhav HB, Annapure US, Deshmukh RR (2021) Non-thermal technologies for food processing. Front Nutr 8:657090

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jambrak AR (2021) Sustainable nonthermal technologies in extraction, stabilization and application of bioactive compounds. Int J Food Sci Technol 56:4821–4822

    Article  Google Scholar 

  19. Guimãraes JT, Silva EK, Freitas MQ, Meireles MAA, Cruz AG (2018) Non-thermal emerging technologies and their effects on the functional properties of dairy products. Curr Opin Food Sci 22:62–66

    Article  Google Scholar 

  20. Pérez-Andrés JM, Álvarez C, Cullen PJ, Tiwari BK (2019) Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Sci Emerg Technol 58:102205

    Article  Google Scholar 

  21. Huppertz T, Kelly AL, Fox PF (2002) Effects of high pressure on constituents and properties of milk. Int Dairy J 12:561–572

    Article  CAS  Google Scholar 

  22. Lee W, Clark S, Swanson BG (2006) Functional properties of high hydrostatic pressure-treated whey protein. J Food Proc Preserv 30:488–501

    Article  CAS  Google Scholar 

  23. Lim SY, Swanson BG, Clark S (2007) High hydrostatic pressure modification of whey protein concentrate for improved functional properties. J Dairy Sci 91:1299–1307

    Article  Google Scholar 

  24. Kobashigura Y, Sakurai M, Nitta K (1999) Effect of hydrostatic pressure on unfolding of α-lactalbumin: volumetric equivalence of the molten globule and unfolded state. Protein Sci 8:2765–2772

    Article  Google Scholar 

  25. Jegouic M, Grinberg VY, Guingant A, Haertlé T (1996) Thiol-induced oligomerization of α-lactalbumin at high pressure. J Protein Chem 15(6):501–509

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed J, Ramaswamy HS (2003) Effect of hydrostatic pressure on rheological characteristics of α-lactalbumin. Aust J Dairy Technol 58(3):233–237

    CAS  Google Scholar 

  27. Huppertz T, Fox PF, Kelly AL (2004) High pressure-induced denaturation of α-lactalbumin and β-lactoglobulin in bovine milk and whey: a possible mechanism. J Dairy Res 71(4):489–495

    Article  CAS  PubMed  Google Scholar 

  28. He JS, Mu TH, Guo X, Zhu S, Azuma N (2013) Comparison of the gel-forming ability and gel properties of α-lactalbumin, lysozyme and myoglobin in the presence of β-lactoglobulin under high pressure. Food Hydrocolloids 33:415–424

    Article  Google Scholar 

  29. Rodiles-López JO, Arroyo-Maya IJ, Jaramillo-Flores ME, Gutiérrez-López GF, Hernández-Arana A, Barbosa-Cánovas GV, Niranjan K, Hernández-Sánchez H (2010) Effects of high hydrostatic pressure on the structure of bovine α-lactalbumin. J Dairy Sci 93:1420–1428

    Article  PubMed  Google Scholar 

  30. Rodiles-López JO, Jaramillo-Flores ME, Gutiérrez-López GF, Hernández-Arana A, Fosado-Quiroz RE, Barbosa-Cánovas GV, Hernández-Sánchez H (2008) Effect of hydrostatic pressure on bovine α-lactalbumin functional properties. J Food Eng 87:363–370

    Article  Google Scholar 

  31. Arroyo-Maya IJ, Rodiles-López JO, Cornejo-Mazón M, Gutiérrez-López GF, Hernández-Arana A, Toledo-Núñez C, Barbosa-Cánovas GV, Flores-Flores JO, Hernández-Sánchez H (2012) Effect of different treatments on the ability of α-lactalbumin to form nanoparticles. J Dairy Sci 95:6204–6214

    Article  CAS  PubMed  Google Scholar 

  32. Qayum A, Chen W, Ma L, Li T, Hussain M, Bilawal A (2020) Characterization and comparison of α-lactalbumin pre- and post-emulsion. J Food Eng 269:109743

    Article  CAS  Google Scholar 

  33. Zou H, Xu Z, Zhao L, Wang Y, Liao X (2019) Effects of high pressure processing on the interactions of α-lactalbumin and pelargonidin-3-glucoside. Food Chem 285:22–30

    Article  CAS  PubMed  Google Scholar 

  34. Marciniak A, Suwal S, Touhami S, Chamberland J, Pouliot Y, Doyen A (2020) Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J Dairy Sci 103:7939–7950

    Article  CAS  PubMed  Google Scholar 

  35. Touhami S, Chamberland J, Perreault V, Suwal S, Marciniak A, Pouliot Y, Doyen A (2021) Coupling high hydrostatic pressure and ultrafiltration for fractionation of alpha-lactalbumin from skim milk. Sep Sci Technol 56(6):1102–1111

    Article  CAS  Google Scholar 

  36. Vanga SK, Wang J, Jayaram S, Raghavan V (2021) Effect of pulsed electric fields and ultrasound processing on proteins and enzymes: a review. Processes 9:722

    Article  CAS  Google Scholar 

  37. Zhao W, Tang Y, Lu L, Chen X, Li C (2014) Review: pulsed electric fields processing of protein-based foods. Food Bioprocess Technol 7:114–125

    Article  CAS  Google Scholar 

  38. Xiang BY, Ngadi MO, Ochoa-Martínez LA, Simpson MV (2011) Pulsed electric field-induced structural modification of whey protein isolate. Food Bioprocess Technol 4:1341–1348

    Article  CAS  Google Scholar 

  39. Axelrod R, Beyrer M, Mathys A (2022) Impact of the electric field intensity and treatment time on whey protein aggregate formation. J Dairy Sci 105:6589–6600

    Article  CAS  PubMed  Google Scholar 

  40. Sui Q, Roginski H, Williams RPW, Versteeg C, Wan J (2011) Effect of pulsed electric field and thermal treatment on the physicochemical and functional properties of whey protein isolate. Int Dairy J 21:206–213

    Article  CAS  Google Scholar 

  41. Robles-López MR, Robles de la Torre RR, Camarillo-Cadena M, Hernández-Arana A, Welti-Chanes JS, Hernández-Sánchez H (2012) Effect of pulsed electric fields on the structure of α-lactalbumin. Rev Mex Ing Quim 11(3):373–382

    Google Scholar 

  42. Xu FY, Wen QH, Wang R, Li J, Chen BR, Zeng XA (2021) Enhanced synthesis of succinylated whey protein isolate by pulsed electric field pretreatment. Food Chem 363:129892

    Article  CAS  PubMed  Google Scholar 

  43. Bhaskaracharya RK, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31–49

    Article  CAS  Google Scholar 

  44. Ortega-Rivas E (2012) Non-thermal food engineering operations. Springer, New York

    Book  Google Scholar 

  45. Povey MJW (1989) Ultrasonics in food engineering part II. Applications J Food Eng 9:1–20

    Article  Google Scholar 

  46. Wang Q, Tolkach A, Kulozik U (2006) Quantitative assessment of thermal denaturation of bovine α-lactalbumin via low-intensity ultrasound, HPLC, and DSC. J Agric Food Chem 54:6501–6506

    Article  CAS  PubMed  Google Scholar 

  47. Velusamy V, Palaniappan L (2016) Effect of pH and glucose on the stability of α-lactalbumin. Food Biophys 11:108–115

    Article  Google Scholar 

  48. Kavitha K, Palaniappan L (2019) Hydrophobicity character of α-lactalbumin nanoparticles: an ultrasonic study. Sci Technol J 7(2):95–101

    Article  Google Scholar 

  49. Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason Sonochem 18(5):951–957

    Article  CAS  PubMed  Google Scholar 

  50. Hoseini SM, Housaindokht MR, Izadyar M, Izadi-Najafabadi R (2017) Effect of ultrasound on the chemical and thermal stability of alpha-lactalbumin. J Acoust Eng Soc Iran 5(1):56–63

    Google Scholar 

  51. Chandrapala J, Zisu B, Kentish M, Ashokkumar M (2012) The effects of high-intensity ultrasound on the structural and functional properties of α-lactalbumin, β-lactoglobulin and their mixtures. Food Res Int 48:940–943

    Article  CAS  Google Scholar 

  52. Jambrak AR, Mason TJ, Lelas V, Krešić G (2010) Ultrasonic effect on physicochemical and functional properties of α-lactalbumin. LWT Food Sci Technol 43:254–262

    Article  CAS  Google Scholar 

  53. Qayum A, Hussain M, Li M, Li J, Shi R, Li T, Anwar A, Ahmed Z, Hou J, Jiang Z (2021) Gelling, microstructure and water-holding capacity properties of alpha-lactalbumin emulsion gel: impact of combined ultrasound pretreatment and laccase cross-linking. Food Hydrocolloids 110:106122

    Article  CAS  Google Scholar 

  54. Koutchma T (2008) UV light for processing foods. Ozone Sci Eng 30:1–6

    Article  Google Scholar 

  55. Gómez-López VM, Jubinville E, Rodríguez-López MI, Trudel-Ferland M, Bouchard S, Jean J (2021) Inactivation of foodborne viruses by UV light: a review. Foods 10:3141

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pattison DI, Rahmanto AS, Davies MJ (2012) Photo-oxidation of proteins. Photochem Photobiol Sci 11:38–53

    Article  CAS  PubMed  Google Scholar 

  57. Dalsgaard TK, Otzen D, Nielsen JH, Larsen LB (2007) Changes in structures of milk proteins upon photo-oxidation. J Agric Food Chem 55:10968–10976

    Article  CAS  PubMed  Google Scholar 

  58. Zhao Z, Engholm-Keller K, Poojary MM, Boelt SG, Rogowska-Wrzesinska A, Skibsted LH, Davies MJ, Lund MN (2020) Generation of aggregates of α-lactalbumin by UV-B light exposure. J Agric Food Chem 68:6701–6714

    Article  CAS  PubMed  Google Scholar 

  59. Sharma S, Singh RK (2020) Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends Food Sci Technol 102:30–36

    Article  CAS  Google Scholar 

  60. Segat A, Misra NN, Cullen PJ, Innocente N (2015) Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Sci Emerg Technol 29:247–254

    Article  CAS  Google Scholar 

  61. Ng SW, Lu P, Rulikowska A, Boehm D, O’Neill G (2021) The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem 342:128283

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author received financial support from the Instituto Politécnico Nacional (Grants 20120690 and 20210460).

Author information

Authors and Affiliations

Authors

Contributions

H.H. wrote the main manuscript text, prepared figure 1 and Tables 1 and 2, and reviewed the manuscript.

Corresponding author

Correspondence to Humberto Hernández-Sánchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Sánchez, H. Effect of Nonthermal Processing on the Structural and Techno-Functional Properties of Bovine α-Lactalbumin. Food Eng Rev 15, 187–195 (2023). https://doi.org/10.1007/s12393-023-09340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09340-8

Keywords

Navigation