Skip to main content

Advertisement

Log in

Photo-oxidation of proteins

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photo-induced damage to proteins occurs via multiple pathways. Direct damage induced by UVB (λ 280–320 nm) and UVA radiation (λ 320–400 nm) is limited to a small number of amino acid residues, principally tryptophan (Trp), tyrosine (Tyr), histidine (His) and disulfide (cystine) residues, with this occurring via both excited state species and radicals. Indirect protein damage can occur via singlet oxygen (1O21Δg), with this resulting in damage to Trp, Tyr, His, cystine, cysteine (Cys) and methionine (Met) residues. Although initial damage is limited to these residues multiple secondary processes, that occur both during and after radiation exposure, can result in damage to other intra- and inter-molecular sites. Secondary damage can arise via radicals (e.g. Trp, Tyr and Cys radicals), from reactive intermediates generated by 1O2 (e.g. Trp, Tyr and His peroxides) and via molecular reactions of photo-products (e.g. reactive carbonyls). These processes can result in protein fragmentation, aggregation, altered physical and chemical properties (e.g. hydrophobicity and charge) and modulated biological turnover. Accumulating evidence implicates these events in cellular and tissue dysfunction (e.g. apoptosis, necrosis and altered cell signaling), and multiple human pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Bensasson, E. J. Land and T. G. Truscott, Pulse radiolysis and flash photolysis: Contributions to the chemistry of biology and medicine, Pergamon Press, Oxford, 1983.

    Google Scholar 

  2. R. V. Bensasson, E. J. Land and T. G. Truscott, Excited states and free radicals in biology and medicine, Oxford University Press, Oxford, 1993.

    Google Scholar 

  3. M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochem. Photobiol. Sci., 2004, 3, 17–25.

    CAS  PubMed  Google Scholar 

  4. M. J. Davies, R. J. W. Truscott, Photo-oxidation of protein and its role in cataractogenesis, J. Photochem. Photobiol., B, 2001, 63, 114–125.

    CAS  PubMed  Google Scholar 

  5. S. G. Afonso, R. E. de Salamanca, A. M. D. Batlle, The photodynamic and non-photodynamic actions of porphyrins, Braz. J. Med. Biol. Res., 1999, 32, 255–266.

    CAS  PubMed  Google Scholar 

  6. J. A. Silvester, G. S. Timmins, M. J. Davies, Photodynamically-generated bovine serum albumin radicals: Evidence for damage transfer and oxidation at cysteine and tryptophan residues, Free Radical Biol. Med., 1998, 24, 754–766.

    CAS  Google Scholar 

  7. L. Bova, A. M. Wood, J. F. Jamie, R. J. W. Truscott, UV filter compounds in human lenses: the origin of AHBG, Invest. Ophthalmol. Vis. Sci., 1999, 40, 3237–3244.

    CAS  PubMed  Google Scholar 

  8. A. Korlimbinis, R. J. Truscott, Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract, Biochemistry, 2006, 45, 1950–1960.

    CAS  PubMed  Google Scholar 

  9. M. R. Clausen, K. Huvaere, L. H. Skibsted, J. Stagsted, Characterization of peroxides formed by riboflavin and light exposure of milk. Detection of urate hydroperoxide as a novel oxidation product, J. Agric. Food Chem., 2010, 58, 481–487.

    CAS  PubMed  Google Scholar 

  10. D. Phillips, Light relief: Photochemistry and medicine, Photochem. Photobiol. Sci., 2010, 9, 1589–1596.

    CAS  PubMed  Google Scholar 

  11. E. S. Nyman, P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.

    CAS  PubMed  Google Scholar 

  12. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies, W. Baumler, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7223–7228.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Pervaiz, M. Olivo, Art and science of photodynamic therapy, Clin. Exp. Pharmacol. Physiol., 2006, 33, 551–556.

    CAS  PubMed  Google Scholar 

  14. K. Konopka, T. Goslinski, Photodynamic therapy in dentistry, J. Dent. Res., 2007, 86, 694–707.

    CAS  PubMed  Google Scholar 

  15. S. Choudhary, K. Nouri, M. L. Elsaie, Photodynamic therapy in dermatology: A review, Lasers Med. Sci., 2009, 24, 971–980.

    PubMed  Google Scholar 

  16. R. C. Straight and J. D. Spikes, Photosensitized oxidation of biomolecules, in Singlet O2, ed. A. A. Frimer, CRC Press, Boca Raton, 1985, pp. 91–143.

  17. M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.

    CAS  PubMed  Google Scholar 

  18. E. J. Hart, M. Anbar, The hydrated electron, Wiley-Interscience, New York, 1970.

    Google Scholar 

  19. W. M. Garrison, Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins, Chem. Rev., 1987, 87, 381–398.

    CAS  Google Scholar 

  20. C. von Sonntag, The chemical basis of radiation biology, Taylor and Francis, London, 1987.

    Google Scholar 

  21. M. J. Davies and R. T. Dean, Radical-mediated protein oxidation: From chemistry to medicine, Oxford University Press, Oxford, 1997.

    Google Scholar 

  22. F. Wilkinson, W. P. Helman, A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    CAS  Google Scholar 

  23. G. Papeschi, M. Monici, S. Pinzauti, Ph effect on dye sensitized photooxidation of aminoacids and albumins, Med. Biol. Environ., 1982, 10, 245–250.

    CAS  Google Scholar 

  24. D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. I. Tryptophan and its simple derivatives, Photochem. Photobiol., 2008, 39, 537–562.

    Google Scholar 

  25. M. J. Davies, B. C. Gilbert, Free radical reactions. Fragmentation and rearrangements in aqueous solution, Adv. Detailed React. Mech., 1991, 1, 35–81.

    CAS  Google Scholar 

  26. L. P. Candeias, P. Wardman, R. P. Mason, The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid, Biophys. J., 1997, 67, 229–237.

    CAS  Google Scholar 

  27. D. J. Kelman, J. A. DeGray, R. P. Mason, Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates, J. Biol. Chem., 1994, 269, 7458–7463.

    CAS  PubMed  Google Scholar 

  28. T. Nauser, W. H. Koppenol, J. M. Gebicki, The kinetics of oxidation of GSH by protein radicals, Biochem. J., 2005, 392, 693–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. D. Steinmann, T. Nauser, J. Beld, M. Tanner, D. Gunther, P. L. Bounds, W. H. Koppenol, Kinetics of tyrosyl radical reduction by selenocysteine, Biochemistry, 2008, 47, 9602–9607.

    CAS  PubMed  Google Scholar 

  30. A. S. Domazou, W. H. Koppenol, J. M. Gebicki, Efficient repair of protein radicals by ascorbate, Free Radical Biol. Med., 2009, 46, 1049–1057.

    CAS  Google Scholar 

  31. J. M. Gebicki, T. Nauser, A. Domazou, D. Steinmann, P. L. Bounds, W. H. Koppenol, Reduction of protein radicals by GSH and ascorbate: Potential biological significance, Amino Acids, 2010, 39, 1131–1137.

    CAS  PubMed  Google Scholar 

  32. B. M. Hoey, J. Butler, The repair of oxidized amino acids by antioxidants, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1984, 791, 212–218.

    CAS  Google Scholar 

  33. D. N. Nikogosyan, H. Gorner, Photolysis of aromatic amino acids in aqueous solution by nanosecond 248 and 193 nm laser light, J. Photochem. Photobiol., B, 1992, 13, 219–234.

    CAS  Google Scholar 

  34. K. L. Stevenson, G. A. Papadantonakis, P. R. LeBreton, Nanosecond UV laser photoionization of aqueous tryptophan: Temperature dependence of quantum yield, mechanism, and kinetics of hydrated electron decay, J. Photochem. Photobiol., A, 2000, 133, 159–167.

    CAS  Google Scholar 

  35. Y. P. Tsentalovich, O. A. Snytnikova, R. Z. Sagdeev, Properties of excited states of aqueous tryptophan, J. Photochem. Photobiol., A, 2004, 162, 371–379.

    CAS  Google Scholar 

  36. M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino, J. L. Flippen, B. Witkop, A valid model for the mechanism of oxidation of tryptophan to formylkynurenine -25 years later, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 4730–4733.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. I. Saito, T. Matsuura, M. Nakagawa, T. Hino, Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives, Acc. Chem. Res., 1977, 10, 346–352.

    CAS  Google Scholar 

  38. M. Gracanin, C. L. Hawkins, D. I. Pattison, M. J. Davies, Singlet oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products, Free Radical Biol. Med., 2009, 47, 92–102.

    CAS  Google Scholar 

  39. A. Posadaz, A. Biasutti, C. Casale, J. Sanz, F. Amat-Guerri, N. A. Garcia, Rose bengal-sensitized photooxidation of the dipeptides l-tryptophyl-l-phenylalanine, l-tryptophyl-l-tyrosine and l-tryptophyl-l-tryptophan: Kinetics, mechanism and photoproducts, Photochem. Photobiol., 2004, 80, 132–138.

    CAS  PubMed  Google Scholar 

  40. G. E. Ronsein, M. C. de Oliveira, M. H. de Medeiros, P. Di Mascio, Characterization of O2(1Δg)-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies, J. Am. Soc. Mass Spectrom., 2009, 20, 188–197.

    CAS  PubMed  Google Scholar 

  41. G. E. Ronsein, M. C. Oliveira, S. Miyamoto, M. H. Medeiros, P. Di Mascio, Tryptophan oxidation by singlet molecular oxygen [O2(1Δg)]: Mechanistic studies using 18O-labeled hydroperoxides, mass spectrometry, and light emission measurements, Chem. Res. Toxicol., 2008, 21, 1271–1283.

    CAS  PubMed  Google Scholar 

  42. R. W. Redmond, J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    CAS  PubMed  Google Scholar 

  43. A. J. Grosvenor, J. D. Morton, J. M. Dyer, Profiling of residue-level photo-oxidative damage in peptides, Amino Acids, 2009, 39, 285–296.

    PubMed  Google Scholar 

  44. A. J. Grosvenor, J. D. Morton, J. M. Dyer, Isobaric labeling approach to the tracking and relative quantitation of peptide damage at the primary structural level, J. Agric. Food Chem., 2010, 58, 12672–12677.

    CAS  PubMed  Google Scholar 

  45. B. D. Hood, B. Garner, R. J. Truscott, Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-d-glucoside, J. Biol. Chem., 1999, 274, 32547–32550.

    CAS  PubMed  Google Scholar 

  46. S. Vazquez, J. A. Aquilina, J. F. Jamie, M. M. Sheil, R. J. Truscott, Novel protein modification by kynurenine in human lenses, J. Biol. Chem., 2001, 277, 4867–4873.

    PubMed  Google Scholar 

  47. N. R. Parker, A. Korlimbinis, J. F. Jamie, M. J. Davies, R. J. Truscott, Reversible binding of kynurenine to lens proteins: Potential protection by glutathione in young lenses, Invest. Ophthalmol. Visual Sci., 2007, 48, 3705–3713.

    Google Scholar 

  48. J. Mizdrak, P. G. Hains, R. J. Truscott, J. F. Jamie, M. J. Davies, Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage, Free Radical Biol. Med., 2008, 44, 1108–1119.

    CAS  Google Scholar 

  49. N. R. Parker, J. F. Jamie, M. J. Davies, R. J. Truscott, Protein-bound kynurenine is a photosensitizer of oxidative damage, Free Radical Biol. Med., 2004, 37, 1479–1489.

    CAS  Google Scholar 

  50. D. I. Pattison, M. J. Davies, Actions of ultraviolet light on cellular structures, Exs, 2006, 96, 131–157.

    CAS  Google Scholar 

  51. J. A. Irwin, H. Ostdal, M. J. Davies, Myoglobin-induced oxidative damage: Evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants, Arch. Biochem. Biophys., 1999, 362, 94–104.

    CAS  PubMed  Google Scholar 

  52. H. Ostdal, M. J. Davies, H. J. Andersen, Reaction between protein radicals and other biomolecules, Free Radical Biol. Med., 2002, 33, 201–209.

    CAS  Google Scholar 

  53. H. Ostdal, L. H. Skibsted, H. J. Andersen, Formation of long-lived protein radicals in the reaction between H2O2-activated metmyoglobin and other proteins, Free Radical Biol. Med., 1997, 23, 754–761.

    CAS  Google Scholar 

  54. L. K. Folkes, M. Trujillo, S. Bartesaghi, R. Radi, P. Wardman, Kinetics of reduction of tyrosine phenoxyl radicals by glutathione, Arch. Biochem. Biophys., 2011, 506, 242–249.

    CAS  PubMed  Google Scholar 

  55. J. P. Eiserich, J. Butler, A. von der Vliet, C. E. Cross, B. Halliwell, Nitric oxide rapidly scavenges tyrosine and tryptophan radicals, Biochem. J., 1995, 310, 745–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. S. Criado, A. T. Soltermann, J. M. Marioli, N. A. Garcia, Sensitized photooxidation of di- and tripeptides of tyrosine, Photochem. Photobiol., 1998, 68, 453–458.

    CAS  PubMed  Google Scholar 

  57. E. Katsuya, K. Seya, H. Hikino, Photo-oxidation of l-tyrosine, an efficient, 1,4-chirality transfer reaction, J. Chem. Soc., Chem. Commun., 1988 934–935.

    Google Scholar 

  58. A. Wright, W. A. Bubb, C. L. Hawkins, M. J. Davies, Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive side-chain peroxides on tyrosine residues, Photochem. Photobiol., 2002, 76, 35–46.

    CAS  PubMed  Google Scholar 

  59. F. M. Jin, J. Leitich, C. von Sonntag, The photolysis (? = 254 nm) of tyrosine in aqueous solutions in the absence and presence of oxygen - the reaction of tyrosine with singlet oxygen, J. Photochem. Photobiol., A, 1995, 92, 147–153.

    CAS  Google Scholar 

  60. A. Wright, C. L. Hawkins, M. J. Davies, Singlet oxygen-mediated protein oxidation: Evidence for the formation of reactive peroxides, Redox Rep., 2000, 5, 159–161.

    CAS  PubMed  Google Scholar 

  61. D. Balasubramanian, X. Du, J. S. J. Zigler, The reaction of singlet oxygen with proteins, with special reference to crystallins, Photochem. Photobiol., 1990, 52, 761–768.

    CAS  PubMed  Google Scholar 

  62. D. Balasubramanian, R. Kanwar, Molecular pathology of dityrosine cross-links in proteins: Structural and functional analysis of four proteins, Mol. Cell. Biochem., 2002, 234/235, 27–38.

    CAS  PubMed  Google Scholar 

  63. M. A. Lam, D. I. Pattison, S. E. Bottle, D. J. Keddie, M. J. Davies, Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals, Chem. Res. Toxicol., 2008, 21, 2111–2119.

    CAS  PubMed  Google Scholar 

  64. N. R. Parker, J. F. Jamie, M. J. Davies, R. J. W. Truscott, Protein-bound kynurenine is a photosensitizer of oxidative damage, Free Radical Biol. Med., 2004, 37, 1479–1489.

    CAS  Google Scholar 

  65. D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine, J. Phys. Chem., 1975, 97, 2606–2612.

    CAS  Google Scholar 

  66. K. Huvaere, L. H. Skibsted, Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins, J. Am. Chem. Soc., 2009, 131, 8049–8060.

    CAS  PubMed  Google Scholar 

  67. V. V. Agon, W. A. Bubb, A. Wright, C. L. Hawkins, M. J. Davies, Sensitizer-mediated photooxidation of histidine residues: Evidence for the formation of reactive side-chain peroxides, Free Radical Biol. Med., 2006, 40, 698–710.

    CAS  Google Scholar 

  68. M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of histidine and its derivatives. Products and mechanism of the reaction, Biochemistry, 1969, 8, 5149–5160.

    CAS  PubMed  Google Scholar 

  69. P. Kang, C. S. Foote, Synthesis of a C-13, N-15 labeled imidazole and characterization of the 2,5-endoperoxide and its decomposition, Tetrahedron Lett., 2000, 41, 9623–9626.

    CAS  Google Scholar 

  70. P. Kang, C. S. Foote, Photosensitized oxidation of C-13,N-15-labeled imidazole derivatives, J. Am. Chem. Soc., 2002, 124, 9629–9638.

    CAS  PubMed  Google Scholar 

  71. S. Kai, M. Suzuki, Dye-sensitized photooxidation of 2,4-disubstituted imidazoles - the formation of isomeric imidazolinones, Heterocycles, 1996, 43, 1185–1188.

    CAS  Google Scholar 

  72. M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of N-benzoyl histidine, Tetrahedron Lett., 1968, 9, 4933–4936.

    Google Scholar 

  73. S. H. Chang, G. M. Teshima, T. Milby, B. Gillece-Castro, E. Canova-Davis, Metal-catalyzed photooxidation of histidine in human growth hormone, Anal. Biochem., 1997, 244, 221–227.

    CAS  PubMed  Google Scholar 

  74. H. R. Shen, J. D. Spikes, P. Kopecekova, J. Kopecek, Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers, J. Photochem. Photobiol., B, 1996, 34, 203–210.

    CAS  PubMed  Google Scholar 

  75. H.-R. Shen, J. D. Spikes, C. J. Smith, J. Kopecek, Photodynamic cross-linking of proteins IV. Nature, of the His-His bond(s) formed in the Rose Bengal-photosensitized cross-linking of N-benzoyl-l-histidine, J. Photochem. Photobiol., A, 2000, 130, 1–6.

    Google Scholar 

  76. J. M. Dyer, S. Clerens, C. D. Cornellison, C. J. Murphy, G. Maurdev, K. R. Millington, Photoproducts formed in the photoyellowing of collagen in the presence of a fluorescent whitening agent, Photochem. Photobiol., 2009, 85, 1314–1321.

    CAS  PubMed  Google Scholar 

  77. D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. III. Cystine and its simple derivatives, Photochem. Photobiol., 1984, 39, 577–583.

    CAS  Google Scholar 

  78. K. R. Millington, J. S. Church, The photodegradation of wool keratin. 2. Proposed mechanisms involving cystine, J. Photochem. Photobiol., B, 1997, 39, 204–212.

    CAS  Google Scholar 

  79. C. Kolano, J. Helbing, G. Bucher, W. Sander, P. Hamm, Intramolecular disulfide bridges as a phototrigger to monitor the dynamics of small cyclic peptides, J. Phys. Chem. B, 2007, 111, 11297–11302.

    CAS  PubMed  Google Scholar 

  80. O. Mozziconacci, B. A. Kerwin, C. Schöneich, Photolysis of an intrachain peptide disulfide bond: Primary and secondary processes, formation of H2S, and hydrogen transfer reactions, J. Phys. Chem. B, 2010, 114, 3668–3688.

    CAS  PubMed  Google Scholar 

  81. D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine, J. Phys. Chem., 1975, 97, 2599–2606.

    CAS  Google Scholar 

  82. D. V. Bent, E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan, J. Phys. Chem., 1975, 97, 2612–2619.

    CAS  Google Scholar 

  83. D. Creed, The photophysics and photochemistry of the near-UV absorbing amino acids. II. Tyrosine and its simple derivatives, Photochem. Photobiol., 1984, 39, 363–375.

    Google Scholar 

  84. A. Vanhooren, K. De Vriendt, B. Devreese, A. Chedad, A. Sterling, H. Van Dael, J. Van Beeumen, I. Hanssens, Selectivity of tryptophan residues in mediating photolysis of disulfide bridges in goat alpha-lactalbumin, Biochemistry, 2006, 45, 2085–2093.

    CAS  PubMed  Google Scholar 

  85. C. Schöneich, K.-D. Asmus, Determination of absolute rate constants for the reversible hydrogen-atom transfer between thiyl radicals and alcohols or ethers, J. Chem. Soc., Faraday Trans., 1995, 91, 1923–1930.

    Google Scholar 

  86. C. Schöneich, K. D. Asmus, Reaction of thiyl radicals with alcohols, ethers and polyunsaturated fatty acids: A possible role of thiyl free radicals in thiol mutagenesis?, Radiat. Environ. Biophys., 1990, 29, 263–271.

    PubMed  Google Scholar 

  87. C. Schöneich, Mechanisms of protein damage induced by cysteine thiyl radical formation, Chem. Res. Toxicol., 2008, 21, 1175–1179.

    PubMed  Google Scholar 

  88. O. Mozziconacci, V. Sharov, T. D. Williams, B. A. Kerwin, C. Schöneich, Peptide cysteine thiyl radicals abstract hydrogen atoms from surrounding amino acids: The photolysis of a cystine containing model peptide, J. Phys. Chem. B, 2008, 112, 9250–9257.

    CAS  PubMed  Google Scholar 

  89. T. Nauser, G. Casi, W. H. Koppenol, C. Schöneich, Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: Absolute rate constants derived from pulse radiolysis and laser flash photolysis, J. Phys. Chem. B, 2008, 112, 15034–15044.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. P. Wardman, C. von Sonntag, Kinetic factors that control the fate of thiyl radicals in cells, Methods Enzymol., 1995, 251, 31–45.

    CAS  PubMed  Google Scholar 

  91. C. Schöneich, Kinetics of thiol reactions, Methods Enzymol., 1995, 251, 45–55.

    PubMed  Google Scholar 

  92. R. W. Murray, S. L. Jindal, Photosensitized oxidation of disulfides related to cystine, Photochem. Photobiol., 1972, 16, 147–151.

    CAS  Google Scholar 

  93. C. S. Foote, J. W. Peters, Chemistry of singlet oxygen. XIV. A reactive intermediate in sulfide photooxidation, J. Am. Chem. Soc., 1971, 93, 3795–3796.

    CAS  Google Scholar 

  94. M. Rougee, R. V. Bensasson, E. J. Land, R. Pariente, Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity, Photochem. Photobiol., 1988, 47, 485–489.

    CAS  PubMed  Google Scholar 

  95. C. Schöneich, Methionine oxidation by reactive oxygen species: Reaction mechanisms and relevance to alzheimer’s disease, Biochim. Biophys. Acta, Proteins Proteomics, 2005, 1703, 111–119.

    Google Scholar 

  96. G. L. Hug, K. Bobrowski, H. Kozubek, B. Marciniak, Photooxidation of methionine derivatives by the 4-carboxybenzophenone triplet state in aqueous solution. Intracomplex proton transfer involving the amino group, Photochem. Photobiol., 1998, 68, 785–796.

    CAS  Google Scholar 

  97. G. L. Hug, K. Bobrowski, H. Kozubek, B. Marciniak, Photo-oxidation of methionine-containing peptides by the 4-carboxybenzophenone triplet state in aqueous solution. Competition between intramolecular two-centered three-electron bonded (S … S)(+) and (S … N)(+) formation, Photochem. Photobiol., 2000, 72, 1–9.

    CAS  PubMed  Google Scholar 

  98. T. Pedzinski, A. Markiewicz, B. Marciniak, Photosensitized oxidation of methionine derivatives. Laser flash photolysis studies, Res. Chem. Intermed., 2009, 35, 497–506.

    CAS  Google Scholar 

  99. H. Yashiro, R. C. White, A. V. Yurkovskaya, M. D. E. Forbes, Methionine radical cation: Structural studies as a function of pH using X- and Q-band time-resolved electron paramagnetic resonance spectroscopy, J. Phys. Chem. A, 2005, 109, 5855–5864.

    CAS  PubMed  Google Scholar 

  100. G. E. Ronsein, S. Miyamoto, E. Bechara, P. Di Mascio, G. R. Martinez, Singlet oxygen-mediated protein oxidation: Damage mechanisms, detection techniques and biological implications, Quim. Nova, 2006, 29, 563–568.

    CAS  Google Scholar 

  101. P. K. Sysak, C. S. Foote, T.-Y. Ching, Chemistry of singlet oxygen - XXV. Photooxygenation, of methionine, Photochem. Photobiol., 1977, 26, 19–27.

    CAS  Google Scholar 

  102. A. Karunakaran-Datt, P. Kennepohl, Redox photochemistry of methionine by sulfur K-edge X-ray absorption spectroscopy: Potential implications for cataract formation, J. Am. Chem. Soc., 2009, 131, 3577–3582.

    CAS  PubMed  Google Scholar 

  103. M. H. Klapper, M. Faraggi, Application of pulse radiolysis to protein chemistry, Q. Rev. Biophys., 1979, 12, 465–519.

    CAS  PubMed  Google Scholar 

  104. W. A. Prutz, Free radical transfer involving sulphur peptide functions, in Sulfur-centered reactive intermediates in chemistry and biology, ed. C. Chatgilialoglu and K.-D. Asmus, Plenum Press, New York, 1990, pp. 389–399.

  105. M. R. DeFelippis, M. Faraggi, M. H. Klapper, Evidence for through-bond long-range electron transfer in peptides, J. Am. Chem. Soc., 1990, 112, 5640–5462.

    CAS  Google Scholar 

  106. H. B. Gray, J. R. Winkler, Electron transfer in proteins, Annu. Rev. Biochem., 1996, 65, 537–561.

    CAS  PubMed  Google Scholar 

  107. W. A. Prutz, J. Butler, E. J. Land, Phenol coupling initiated by one-electron oxidation of tyrosine units in peptides and histone, Int. J. Radiat. Biol., 1983, 44, 183–196.

    CAS  Google Scholar 

  108. W. A. Prutz, F. Siebert, J. Butler, E. J. Land, A. Menez, T. Montenay-Garestier, Charge transfer in peptides. Intramolecular radical transformations involving methionine, tryptophan and tyrosine, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1982, 705, 139–149.

    Google Scholar 

  109. M. Faraggi, M. R. DeFelippis, M. H. Klapper, Long-range electron transfer between tyrosine and tryptophan in peptides, J. Am. Chem. Soc., 1989, 111, 5141–5145.

    CAS  Google Scholar 

  110. M. Faraggi, J. P. Steiner, M. H. Klapper, Intramolecular electron and proton transfer in proteins: CO2- reduction of riboflavin binding protein and ribonuclease A, Biochemistry, 1985, 24, 3273–3279.

    CAS  PubMed  Google Scholar 

  111. L. Grierson, K. Hildenbrand, E. Bothe, Intramolecular transformation reaction of the glutathione thiyl radical into a non-sulphur-centred radical: A pulse-radiolysis and EPR study, Int. J. Radiat. Biol., 1992, 62, 265–277.

    CAS  PubMed  Google Scholar 

  112. R. Zhao, J. Lind, G. Merenyi, T. E. Eriksen, Significance of the intramolecular transformation of glutathione thiyl radicals to a-aminoalkyl radicals. Thermochemical and biological implications, J. Chem. Soc., Perkin Trans. 2, 1997 569–574.

    Google Scholar 

  113. A. Rauk, D. Yu, D. A. Armstrong, Oxidative damage to and by cysteine in proteins: An ab initio study of the radical structures, C–H, S–H, and C–C bond dissociation energies, and transition structures for H abstraction by thiyl radicals, J. Am. Chem. Soc., 1998, 120, 8848–8855.

    CAS  Google Scholar 

  114. R. Zhao, J. Lind, G. Merényi, T. E. Eriksen, Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from a-amino C–H bonds, J. Am. Chem. Soc., 1994, 116, 12010–12015.

    CAS  Google Scholar 

  115. O. Mozziconacci, B. A. Kerwin, C. Schöneich, Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: Covalent H/D exchange, radical–radical reactions, and L- to D-Ala conversion, J. Phys. Chem. B, 2010, 114, 6751–6762.

    CAS  PubMed  Google Scholar 

  116. O. Mozziconacci, T. D. Williams, B. A. Kerwin, C. Schöneich, Reversible intramolecular hydrogen transfer between protein cysteine thiyl radicals and alpha C–H bonds in insulin: Control of selectivity by secondary structure, J. Phys. Chem. B, 2008, 112, 15921–15932.

    CAS  PubMed  Google Scholar 

  117. E. Silva, C. De Landea, A. M. Edwards, E. Lissi, Lysozyme photo-oxidation by singlet oxygen: Properties of the partially inactivated enzyme, J. Photochem. Photobiol., B, 2000, 55, 196–200.

    CAS  PubMed  Google Scholar 

  118. C. Prinsze, T. M. Dubbelman, J. Van Steveninck, Protein damage, induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1990, 1038, 152–157.

    CAS  Google Scholar 

  119. C. Prinsze, T. M. Dubbelman, J. Van Steveninck, Potentiation of thermal inactivation of glyceraldehyde-3-phosphate dehydrogenase by photodynamic treatment. A possible model for the synergistic interaction between photodynamic therapy and hyperthermia, Biochem. J., 1991, 276, 357–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. T. K. Dalsgaard, D. Otzen, J. H. Nielsen, L. B. Larsen, Changes in structures of milk proteins upon photo-oxidation, J. Agric. Food Chem., 2007, 55, 10968–10976.

    CAS  PubMed  Google Scholar 

  121. L. Redecke, S. Binder, M. I. Y. Elmallah, R. Broadbent, C. Tilkorn, B. Schulz, P. May, A. Goos, A. Eich, M. Rubhausen, C. Betzel, UV-light-induced conversion and aggregation of prion proteins, Free Radical Biol. Med., 2009, 46, 1353–1361.

    CAS  Google Scholar 

  122. S. Roy, B. D. Mason, C. S. Schöneich, J. F. Carpenter, T. C. Boone, B. A. Kerwin, Light-induced aggregation of type I soluble tumor necrosis factor receptor, J. Pharm. Sci., 2009, 98, 3182–3199.

    CAS  PubMed  Google Scholar 

  123. E. Silva, M. Barrera, The riboflavin-sensitized photooxidation of horseradish apoperoxidase, Radiat. Environ. Biophys., 1985, 24, 57–61.

    CAS  PubMed  Google Scholar 

  124. J. D. Goosey, J. S. Zigler, Jr., J. H. Kinoshita, Cross-linking of lens crystallins in a photodynamic system: A process mediated by singlet oxygen, Science, 1980, 208, 1278–1280.

    CAS  PubMed  Google Scholar 

  125. M. Francis Simpanya, R. R. Ansari, V. Leverenz, F. J. Giblin, Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract, Photochem. Photobiol., 2008, 84, 1589–1595.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. W. Wang, S. Nema, D. Teagarden, Protein aggregation-pathways and influencing factors, Int. J. Pharm., 2010, 390, 89–99.

    CAS  PubMed  Google Scholar 

  127. H. Shen, J. D. Spikes, C. J. Smith, J. Kopecek, Photodynamic cross-linking of proteins V. Nature, of the tyrosine-tyrosine bonds formed in the fmn-sensitized intermolecular cross-linking of N-acetyl-L-tyrosine, J. Photochem. Photobiol., A, 2000, 133, 115–122.

    CAS  Google Scholar 

  128. T. M. Dubbelman, C. Haasnoot, J. van Steveninck, Temperature dependence of photodynamic red cell membrane damage, Biochim. Biophys. Acta, Biomembr., 1980, 601, 220–227.

    CAS  Google Scholar 

  129. H. Verweij, J. van Steveninck, Model studies on photodynamic crosslinking, Photochem. Photobiol., 1982, 35, 265–267.

    CAS  Google Scholar 

  130. J. Dillon, R. Chiesa, R. H. Wang, M. McDermott, Molecular changes during the photooxidation of alpha-crystallin in the presence of uroporphyrin, Photochem. Photobiol., 1993, 57, 526–530.

    CAS  PubMed  Google Scholar 

  131. J. A. Silvester, G. S. Timmins, M. J. Davies, Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin, Arch. Biochem. Biophys., 1998, 350, 249–258.

    CAS  PubMed  Google Scholar 

  132. A. Michaeli, J. Feitelson, Reactivity of singlet oxygen toward amino acids and peptides, Photochem. Photobiol., 1994, 59, 284–289.

    CAS  PubMed  Google Scholar 

  133. S. Rinalducci, N. Campostrini, P. Antonioli, P. G. Righetti, P. Roepstorff, L. Zolla, Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins, J. Proteome Res., 2005, 4, 2327–2337.

    CAS  PubMed  Google Scholar 

  134. T. Gomyo, M. Fujimaki, Studies on changes in protein by dye sensitized photooxidation. Part 3. On the photodecomposition products of lysozyme, Agric. Biol. Chem., 1970, 34, 302–309.

    CAS  Google Scholar 

  135. C. L. Hawkins, M. J. Davies, Generation and propagation of radical reactions on proteins, Biochim. Biophys. Acta, Bioenerg., 2001, 1504, 196–219.

    CAS  Google Scholar 

  136. H. von Tappeiner, Uber die wirkung fluoreszierender substanzen auf fermente und toxine, Ber. Dtsch. Chem. Ges., 1903, 36, 3035–3038.

    Google Scholar 

  137. A. Wright, C. L. Hawkins, M. J. Davies, Photo-oxidation of cells generates long-lived intracellular protein peroxides, Free Radical Biol. Med., 2003, 34, 637–647.

    CAS  Google Scholar 

  138. A. Suryo Rahmanto, P. E. Morgan, C. L. Hawkins, M. J. Davies, Cellular effects of peptide and protein hydroperoxides, Free Radical Biol. Med., 2010, 48, 1071–1078.

    CAS  Google Scholar 

  139. A. Suryo Rahmanto, P. E. Morgan, C. L. Hawkins, M. J. Davies, Cellular effects of photo-generated oxidants and long-lived, reactive, hydroperoxide photo-products, Free Radical Biol. Med., 2010, 49, 1505–1515.

    CAS  Google Scholar 

  140. P. E. Morgan, R. T. Dean, M. J. Davies, Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack, Eur. J. Biochem., 2003, 269, 1916–1925.

    Google Scholar 

  141. M. B. Hampton, P. E. Morgan, M. J. Davies, Inactivation of cellular caspases by peptide-derived tryptophan and tyrosine peroxides, FEBS Lett., 2002, 527, 289–292.

    CAS  PubMed  Google Scholar 

  142. M. Gracanin, M. J. Davies, Inhibition of protein tyrosine phosphatases by amino acid, peptide and protein hydroperoxides: Potential modulation of cell signaling by protein oxidation products, Free Radical Biol. Med., 2007, 42, 1543–1551.

    CAS  Google Scholar 

  143. H. A. Headlam, M. Gracanin, K. J. Rodgers, M. J. Davies, Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides, Free Radical Biol. Med., 2006, 40, 1539–1548.

    CAS  Google Scholar 

  144. M. Gracanin, M. A. Lam, P. E. Morgan, K. J. Rodgers, C. L. Hawkins, M. J. Davies, Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26 s proteasome, Free Radical Biol. Med., 2011, 50, 389–399.

    CAS  Google Scholar 

  145. P. E. Morgan, R. T. Dean, M. J. Davies, Protective mechanisms against peptide and protein peroxides generated by singlet oxygen, Free Radical Biol. Med., 2004, 36, 484–496.

    CAS  Google Scholar 

  146. M. Tanito, A. Nishiyama, T. Tanaka, H. Masutani, H. Nakamura, J. Yodoi, A. Ohira, Change of redox status and modulation by thiol replenishment in retinal photooxidative damage, Invest. Ophthalmol. Vis. Sci., 2002, 43, 2392–2400.

    PubMed  Google Scholar 

  147. M. Linetsky, J. M. Hill, V. G. Chemoganskiy, F. Hu, B. J. Ortwerth, Studies on the mechanism of the UVA light-dependent loss of glutathione reductase activity in human lenses, Invest. Ophthalmol. Visual Sci., 2003, 44, 3920–3926.

    Google Scholar 

  148. A. V. Peskin, A. G. Cox, P. Nagy, P. E. Morgan, M. B. Hampton, M. J. Davies, C. C. Winterbourn, Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3, Biochem. J., 2010, 432, 313–321.

    CAS  PubMed  Google Scholar 

  149. V. Muthusamy, T. J. Piva, The UV response of the skin: A review of the MAPK, NFkappaB and TNFalpha signal transduction pathways, Arch. Dermatol. Res., 2009, 302, 5–17.

    PubMed  Google Scholar 

  150. A. J. Ridley, J. R. Whiteside, T. J. McMillan, S. L. Allinson, Cellular and sub-cellular responses to UVA in relation to carcinogenesis, Int. J. Radiat. Biol., 2009, 85, 177–195.

    CAS  PubMed  Google Scholar 

  151. C. J. Bertling, F. Lin, A. W. Girotti, Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells, Photochem. Photobiol., 1996, 64, 137–142.

    CAS  PubMed  Google Scholar 

  152. G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection, Photochem. Photobiol. Sci., 2006, 5, 215–237.

    CAS  PubMed  Google Scholar 

  153. S. Gross, A. Knebel, T. Tenev, A. Neininger, M. Gaestel, P. Herrlich, F. D. Bohmer, Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction, J. Biol. Chem., 1999, 274, 26378–26386.

    CAS  PubMed  Google Scholar 

  154. Y. Xu, Y. Shao, J. J. Voorhees, G. J. Fisher, Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes, J. Biol. Chem., 2006, 281, 27389–27397.

    CAS  PubMed  Google Scholar 

  155. P. Gulati, B. Markova, M. Gottlicher, F. D. Bohmer, P. A. Herrlich, UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation, EMBO Rep., 2004, 5, 812–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. P. Chiarugi, M. L. Taddei, G. Ramponi, Oxidation and tyrosine phosphorylation: Synergistic or antagonistic cues in protein tyrosine phosphatase, Cell. Mol. Life Sci., 2005, 62, 931–936.

    CAS  PubMed  Google Scholar 

  157. R. L. van Montfort, M. Congreve, D. Tisi, R. Carr, H. Jhoti, Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1b, Nature, 2003, 423, 773–777.

    PubMed  Google Scholar 

  158. J. M. Denu, K. G. Tanner, Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation, Biochemistry, 1998, 37, 5633–5642.

    CAS  PubMed  Google Scholar 

  159. C. von Montfort, V. S. Sharov, S. Metzger, C. Schöneich, H. Sies, L. O. Klotz, Singlet oxygen inactivates protein tyrosine phosphatase-1b by oxidation of the active site cysteine, Biol. Chem., 2006, 387, 1399–1404.

    Google Scholar 

  160. A. Caselli, R. Marzocchini, G. Camici, G. Manao, G. Moneti, G. Pieraccini, G. Ramponi, The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2, J. Biol. Chem., 1998, 273, 32554–32560.

    CAS  PubMed  Google Scholar 

  161. A. Hernandez-Hernandez, M. N. Garabatos, M. C. Rodriguez, M. L. Vidal, A. Lopez-Revuelta, J. I. Sanchez-Gallego, M. Llanillo, J. Sanchez-Yague, Structural characteristics of a lipid peroxidation product, trans-2-nonenal, that favour inhibition of membrane-associated phosphotyrosine phosphatase activity, Biochim. Biophys. Acta, Gen. Subj., 2005, 1726, 317–325.

    CAS  Google Scholar 

  162. G. A. Knock, J. P. Ward, Redox regulation of protein kinases as a modulator of vascular function, Antioxid. Redox Signal., 2011 10.1089/ars.2010.3614.

    Google Scholar 

  163. R. Gopalakrishna, S. Jaken, Protein kinase c signaling and oxidative stress, Free Radical Biol. Med., 2000, 28, 1349–1361.

    CAS  Google Scholar 

  164. H. Lenz, M. Schmidt, V. Welge, U. Schlattner, T. Wallimann, H. P. Elsasser, K. P. Wittern, H. Wenck, F. Stab, T. Blatt, The creatine kinase system in human skin: Protective effects of creatine against oxidative and UV damage in vitro and in vivo, J. Invest. Dermatol., 2005, 124, 443–452.

    CAS  PubMed  Google Scholar 

  165. E. Pirev, C. Calles, P. Schroeder, H. Sies, K. D. Kroncke, Ultraviolet-A irradiation but not ultraviolet-B or infrared-A irradiation leads to a disturbed zinc homeostasis in cells, Free Radical Biol. Med., 2008, 45, 86–91.

    CAS  Google Scholar 

  166. S. Yamasaki, K. Sakata-Sogawa, A. Hasegawa, T. Suzuki, K. Kabu, E. Sato, T. Kurosaki, S. Yamashita, M. Tokunaga, K. Nishida, T. Hirano, Zinc is a novel intracellular second messenger, J. Cell Biol., 2007, 177, 637–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. K. D. Kroncke, L. O. Klotz, Zinc fingers as biologic redox switches?, Antioxid. Redox Signaling, 2009, 11, 1015–1027.

    Google Scholar 

  168. A. Knebel, H. J. Rahmsdorf, A. Ullrich, P. Herrlich, Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents, EMBO J., 1996, 15, 5314–5325.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. P. Larsson, K. Ollinger, I. Rosdahl, Ultraviolet (UV)A- and UVB-induced redox alterations and activation of nuclear factor-kappaB in human melanocytes-protective effects of alpha-tocopherol, Br. J. Dermatol., 2006, 155, 292–300.

    CAS  PubMed  Google Scholar 

  170. S. Gonzalez, M. Fernandez-Lorente, Y. Gilaberte-Calzada, The latest on skin photoprotection, Clin. Dermatol., 2008, 26, 614–626.

    PubMed  Google Scholar 

  171. S. Y. Kim, J. K. Tak, J. W. Park, Inactivation of NADP+-dependent isocitrate dehydrogenase by singlet oxygen derived from photoactivated Rose Bengal, Biochimie, 2004, 86, 501–507.

    CAS  PubMed  Google Scholar 

  172. S. M. Lee, T. L. Huh, J. W. Park, Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species, Biochimie, 2001, 83, 1057–1065.

    CAS  PubMed  Google Scholar 

  173. J. Luo, L. Li, Y. P. Zhang, D. R. Spitz, G. R. Buettner, L. W. Oberley, F. E. Domann, Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen, Antioxid. Redox Signaling, 2006, 8, 1307–1314.

    CAS  Google Scholar 

  174. K. Punnonen, C. T. Jansen, A. Puntala, M. Ahotupa, Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes, J. Invest. Dermatol., 1991, 96, 255–259.

    CAS  PubMed  Google Scholar 

  175. V. Maresca, E. Flori, S. Briganti, E. Camera, M. Cario-Andre, A. Taieb, M. Picardo, UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype, J. Invest. Dermatol., 2006, 126, 182–190.

    CAS  PubMed  Google Scholar 

  176. S. R. Johar, U. M. Rawal, N. K. Jain, A. R. Vasavada, Sequential effects of ultraviolet radiation on the histomorphology, cell density and antioxidative status of the lens epithelium–an in vivo study, Photochem. Photobiol., 2003, 78, 306–311.

    CAS  PubMed  Google Scholar 

  177. C. R. Picot, M. Moreau, M. Juan, E. Noblesse, C. Nizard, I. Petropoulos, B. Friguet, Impairment of methionine sulfoxide reductase during UV irradiation and photoaging, Exp. Gerontol., 2007, 42, 859–863.

    CAS  PubMed  Google Scholar 

  178. M. T. Leccia, M. Yaar, N. Allen, M. Gleason, B. A. Gilchrest, Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts, Exp. Dermatol., 2001, 10, 272–279.

    CAS  PubMed  Google Scholar 

  179. S. Ma, R. M. Caprioli, K. E. Hill, R. F. Burk, Loss of selenium from selenoproteins: Conversion of selenocysteine to dehydroalanine in vitro, J. Am. Soc. Mass Spectrom., 2003, 14, 593–600.

    CAS  PubMed  Google Scholar 

  180. H. T. Le, A. F. Chaffotte, E. Demey-Thomas, J. Vinh, B. Friguet, J. Mary, Impact of hydrogen peroxide on the activity, structure, and conformational stability of the oxidized protein repair enzyme methionine sulfoxide reductase A, J. Mol. Biol., 2009, 393, 58–66.

    CAS  PubMed  Google Scholar 

  181. F. M. Low, M. B. Hampton, A. V. Peskin, C. C. Winterbourn, Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte, Blood, 2007, 109, 2611–2617.

    CAS  PubMed  Google Scholar 

  182. A. V. Peskin, F. M. Low, L. N. Paton, G. J. Maghzal, M. B. Hampton, C. C. Winterbourn, The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents, J. Biol. Chem., 2006, 282, 11885–11892.

    Google Scholar 

  183. G. Snider, L. Grout, E. L. Ruggles, R. J. Hondal, Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: Implications for the catalytic mechanism and redox signaling, Biochemistry, 2010, 49, 10329–10338.

    CAS  PubMed  Google Scholar 

  184. S. R. Lee, S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, S. G. Rhee, Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2521–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. S. G. Rhee, C. S. Cho, Blot-based detection of dehydroalanine-containing glutathione peroxidase with the use of biotin-conjugated cysteamine, Methods Enzymol., 2010, 474, 23–34.

    CAS  PubMed  Google Scholar 

  186. A. Bindoli, J. M. Fukuto, H. J. Forman, Thiol chemistry in peroxidase catalysis and redox signaling, Antioxid. Redox Signaling, 2008, 10, 1549–1564.

    CAS  Google Scholar 

  187. G. F. Vile, R. M. Tyrrell, UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biol. Med., 1995, 18, 721–730.

    CAS  Google Scholar 

  188. E. Kvam, V. Hejmadi, S. Ryter, C. Pourzand, R. M. Tyrrell, Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet A radiation that depends on release of iron from heme, Free Radical Biol. Med., 2000, 28, 1191–1196.

    CAS  Google Scholar 

  189. S. M. Keyse, R. M. Tyrrell, Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. C. Pourzand, R. D. Watkin, J. E. Brown, R. M. Tyrrell, Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6751–6756.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. G. Cairo, E. Castrusini, G. Minotti, A. Bernelli-Zazzera, Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: A protective stratagem against oxidative injury, FASEB J., 1996, 10, 1326–1335.

    CAS  PubMed  Google Scholar 

  192. O. Reelfs, I. M. Eggleston, C. Pourzand, Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs, Curr. Drug Metab., 2010, 11, 242–249.

    CAS  PubMed  Google Scholar 

  193. A. Valencia, I. E. Kochevar, Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes, J. Invest. Dermatol., 2007, 128, 214–222.

    PubMed  Google Scholar 

  194. M. Schauen, H. T. Hornig-Do, S. Schomberg, G. Herrmann, R. J. Wiesner, Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death, Free Radical Biol. Med., 2007, 42, 499–509.

    CAS  Google Scholar 

  195. B. Catalgol, I. Ziaja, N. Breusing, L. O. Klotz, J. Krutmann, T. Grune, Protein oxidation and proteasome inhibition during UVA irradiation, Free Radical Res., 2008, 42, S33.

    Google Scholar 

  196. A. L. Bulteau, M. Moreau, C. Nizard, B. Friguet, Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes, Free Radical Biol. Med., 2002, 32, 1157–1170.

    CAS  Google Scholar 

  197. C. S. Sander, H. Chang, S. Salzmann, C. S. Muller, S. Ekanayake-Mudiyanselage, P. Elsner, J. J. Thiele, Photoaging is associated with protein oxidation in human skin in vivo, J. Invest. Dermatol., 2002, 118, 618–625.

    CAS  PubMed  Google Scholar 

  198. R. Haywood, C. Andrady, N. Kassouf, N. Sheppard, Intensity-dependent direct solar radiation- and UVA-induced radical damage to human skin and DNA, lipids and proteins, Photochem. Photobiol., 2011, 87, 117–130.

    CAS  PubMed  Google Scholar 

  199. F. Kriegenburg, E. G. Poulsen, A. Koch, E. Kruger, R. Hartmann-Petersen, Redox control of the ubiquitin-proteasome system: From molecular mechanisms to functional significance, Antioxid. Redox Signal., 2011 10.1089/ars.2010.3590.

    Google Scholar 

  200. B. Catalgol, I. Ziaja, N. Breusing, T. Jung, A. Hohn, B. Alpertunga, P. Schroeder, N. Chondrogianni, E. S. Gonos, I. Petropoulos, B. Friguet, L. O. Klotz, J. Krutmann, T. Grune, The proteasome is an integral part of solar ultraviolet A radiation-induced gene expression, J. Biol. Chem., 2009, 284, 30076–30086.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. T. Reinheckel, N. Sitte, O. Ullrich, U. Kuckelkorn, K. J. Davies, T. Grune, Comparative resistance of the 20S and 26S proteasome to oxidative stress, Biochem. J., 1998, 335, 637–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. U. T. Brunk, A. Terman, Lipofuscin: Mechanisms of age-related accumulation and influence on cell function, Free Radical Biol. Med., 2002, 33, 611–619.

    CAS  Google Scholar 

  203. T. Grune, T. Jung, K. Merker, K. J. Davies, Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease, Int. J. Biochem. Cell Biol., 2004, 36, 2519–2530.

    CAS  PubMed  Google Scholar 

  204. S. Davies, M. H. Elliott, E. Floor, T. G. Truscott, M. Zareba, T. Sarna, F. A. Shamsi, M. E. Boulton, Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells, Free Radical Biol. Med., 2001, 31, 256–265.

    CAS  Google Scholar 

  205. U. T. Brunk, H. Dalen, K. Roberg, H. B. Hellquist, Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts, Free Radical Biol. Med., 1997, 23, 616–626.

    CAS  Google Scholar 

  206. F. Y. Wan, L. Yang, Y. G. Zhong, W. Zhu, Y. N. Wang, G. J. Zhang, Enhancement of lysosomal osmotic sensitivity induced by the photooxidation of membrane thiol groups, Photochem. Photobiol., 2002, 75, 134–139.

    CAS  PubMed  Google Scholar 

  207. F. Y. Wan, G. J. Zhang, Enhancement of lysosomal proton permeability induced by photooxidation of membrane thiol groups, Arch. Biochem. Biophys., 2002, 402, 268–274.

    CAS  PubMed  Google Scholar 

  208. G. T. Wondrak, M. J. Roberts, D. Cervantes-Laurean, M. K. Jacobson, E. L. Jacobson, Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells, J. Invest. Dermatol., 2003, 121, 578–586.

    CAS  PubMed  Google Scholar 

  209. S. Kar, S. Subbaram, P. M. Carrico, J. A. Melendez, Redox-control of matrix metalloproteinase-1: A critical link between free radicals, matrix remodeling and degenerative disease, Respir. Physiol. Neurobiol., 2010, 174, 299–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. S. Koch, C. M. Volkmar, V. Kolb-Bachofen, H. G. Korth, M. Kirsch, A. H. Horn, H. Sticht, N. Pallua, C. V. Suschek, A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals, J. Mol. Med., 2008, 87, 261–272.

    PubMed  Google Scholar 

  211. A. Van Laethem, S. Claerhout, M. Garmyn, P. Agostinis, The sunburn cell: Regulation of death and survival of the keratinocyte, Int. J. Biochem. Cell Biol., 2005, 37, 1547–1553.

    PubMed  Google Scholar 

  212. J. M. Sheehan, A. R. Young, The sunburn cell revisited: An update on mechanistic aspects, Photochem. Photobiol. Sci., 2002, 1, 365–377.

    CAS  PubMed  Google Scholar 

  213. S. W. Ryter, H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, A. M. Choi, Mechanisms of cell death in oxidative stress, Antioxid. Redox Signaling, 2007, 9, 49–89.

    CAS  Google Scholar 

  214. S. Zhuang, I. E. Kochevar, Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways, Photochem. Photobiol., 2003, 78, 61–67.

    CAS  PubMed  Google Scholar 

  215. D. Berg, M. Lehne, N. Muller, D. Siegmund, S. Munkel, W. Sebald, K. Pfizenmaier, H. Wajant, Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95l, Cell Death Differ., 2007, 14, 2021–2034.

    CAS  PubMed  Google Scholar 

  216. M. B. Hampton, I. Stamenkovic, C. C. Winterbourn, Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide, FEBS Lett., 2002, 517, 229–232.

    CAS  PubMed  Google Scholar 

  217. D. Suto, Y. Iuchi, Y. Ikeda, K. Sato, Y. Ohba, J. Fujii, Inactivation of cysteine and serine proteases by singlet oxygen, Arch. Biochem. Biophys., 2007, 461, 151–158.

    CAS  PubMed  Google Scholar 

  218. R. Gniadecki, T. Thorn, J. Vicanova, A. Petersen, H. C. Wulf, Role of mitochondria in ultraviolet-induced oxidative stress, J. Cell. Biochem., 2001, 80, 216–222.

    Google Scholar 

  219. J. H. Rabe, A. J. Mamelak, P. J. S. McElgunn, W. L. Morison, D. N. Sauder, Photoaging: Mechanisms and repair, J. Am. Acad. Dermatol., 2006, 55, 1–19.

    PubMed  Google Scholar 

  220. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol., B, 2001, 63, 41–51.

    CAS  PubMed  Google Scholar 

  221. G. T. Wondrak, Let the sun shine in: Mechanisms and potential for therapeutics in skin photodamage, Curr. Opin. Invest. Drugs, 2007, 8, 390–400.

    CAS  Google Scholar 

  222. G. J. Smith, Photodegradation of keratin and other structural proteins, J. Photochem. Photobiol., B, 1995, 27, 187–198.

    CAS  Google Scholar 

  223. H. S. Black, F. R. deGruijl, P. D. Forbes, J. E. Cleaver, H. N. Ananthaswamy, E. C. deFabo, S. E. Ullrich, R. M. Tyrrell, Photocarcinogenesis: An overview, J. Photochem. Photobiol., B, 1997, 40, 29–47.

    CAS  PubMed  Google Scholar 

  224. E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    CAS  PubMed  Google Scholar 

  225. D. L. Narayanan, R. N. Saladi, J. L. Fox, Ultraviolet radiation and skin cancer, Int. J. Dermatol., 2010, 49, 978–986.

    PubMed  Google Scholar 

  226. J. E. Roberts, Hazards of sunlight exposure to the eye, in Sun protection in man, ed. P. U. Giacomoni, Elsevier, Amsterdam, 2001, pp. 155–174.

  227. J. E. Roberts, Ocular phototoxicity, J. Photochem. Photobiol., B, 2001, 64, 136–143.

    CAS  PubMed  Google Scholar 

  228. D. N. Hu, J. D. Simon, T. Sarna, Role of ocular melanin in ophthalmic physiology and pathology, Photochem. Photobiol., 2008, 84, 639–644.

    CAS  PubMed  Google Scholar 

  229. B. Rozanowski, J. Cuenco, S. Davies, F. A. Shamsi, A. Zadlo, P. Dayhaw-Barker, M. Rozanowska, T. Sarna, M. E. Boulton, The phototoxicity of aged human retinal melanosomes, Photochem. Photobiol., 2008, 84, 650–657.

    CAS  PubMed  Google Scholar 

  230. O. Takikawa, T. Littlejohn, R. J. W. Truscott, Indoleamine 2.3-dioxygenase in the human lens, the first enzyme in the synthesis of UV filters, Exp. Eye Res., 2001, 72, 271–277.

    CAS  PubMed  Google Scholar 

  231. J. A. Aquilina, R. J. Truscott, Cysteine is the initial site of modification of a-crystallin by kynurenine, Biochem. Biophys. Res. Commun., 2000, 276, 216–223.

    CAS  PubMed  Google Scholar 

  232. B. Garner, D. C. Shaw, R. A. Lindner, J. A. Carver, R. J. Truscott, Non-oxidative modification of lens crystallins by kynurenine: A novel post-translational protein modification with possible relevance to ageing and cataract, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000, 1476, 265–278.

    CAS  Google Scholar 

  233. J. A. Aquilina, R. J. W. Truscott, Identifying sites of attachment of UV filters to proteins in older human lenses, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, 1596, 6–15.

    CAS  Google Scholar 

  234. D. Balasubramanian, Photodynamics of cataract: An update on endogenous chromophores and antioxidants, Photochem. Photobiol., 2005, 81, 498–501.

    CAS  PubMed  Google Scholar 

  235. A. Korlimbinis, P. G. Hains, R. J. Truscott, J. A. Aquilina, 3-hydroxykynurenine oxidizes alpha-crystallin: Potential role in cataractogenesis, Biochemistry, 2006, 45, 1852–1860.

    CAS  PubMed  Google Scholar 

  236. B. J. Ortwerth, J. Bhattacharyya, E. Shipova, Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light, Invest. Ophthalmol. Visual Sci., 2009, 50, 3311–3319.

    Google Scholar 

  237. T. D. Mody, J. L. Sessler, Texaphyrins: A new approach to drug development, J. Porphyrins Phthalocyanines, 2001, 5, 134–142.

    CAS  Google Scholar 

  238. T. S. Johnson, A. C. O’Neill, P. M. Motarjem, C. Amann, T. Nguyen, M. A. Randolph, J. M. Winograd, I. E. Kochevar, R. W. Redmond, Photochemical tissue bonding: A promising technique for peripheral nerve repair, J. Surg. Res., 2007, 143, 224–229.

    CAS  PubMed  Google Scholar 

  239. M. Yao, A. Yaroslavsky, F. P. Henry, R. W. Redmond, I. E. Kochevar, Phototoxicity is not associated with photochemical tissue bonding of skin, Lasers Surg. Med., 2010, 42, 123–131.

    PubMed  Google Scholar 

  240. R. A. Franco, J. R. Dowdall, K. Bujold, C. Amann, W. Faquin, R. W. Redmond, I. E. Kochevar, Photochemical repair of vocal fold microflap defects, Laryngoscope, 2011, 121, 1244–1251.

    PubMed  Google Scholar 

  241. E. Choe, D. B. Min, Chemistry and reactions of reactive oxygen species in foods, Crit. Rev. Food Sci. Nutr., 2006, 46, 1–22.

    CAS  PubMed  Google Scholar 

  242. B. H. Ostdal, M. R. Weisbjerg, L. H. Skibsted, J. H. Nielsen, Protection against photooxidation of milk by high urate content, Milchwissenschaft-Milk Sci. Internat., 2008, 63, 119–122.

    Google Scholar 

  243. D. Scheidegger, R. P. Pecora, P. M. Radici, S. C. Kivatinitz, Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure, J. Dairy Sci., 2010, 93, 5101–5109.

    CAS  PubMed  Google Scholar 

  244. M. N. Lund, M. Heinonen, C. P. Baron, M. Estevez, Protein oxidation in muscle foods: A review, Mol. Nutr. Food Res., 2011, 55, 83–95.

    CAS  PubMed  Google Scholar 

  245. J. M. Dyer, S. D. Bringans, W. G. Bryson, Determination of photo-oxidation products within photoyellowed bleached wool proteins, Photochem. Photobiol., 2006, 82, 551–557.

    CAS  PubMed  Google Scholar 

  246. J. M. Dyer, J. E. Plowman, G. L. Krsinic, S. Deb-Choudhury, H. Koehn, K. R. Millington, S. Clerens, Proteomic evaluation and location of UVB-induced photo-oxidation in wool, J. Photochem. Photobiol., B, 2010, 98, 118–127.

    CAS  PubMed  Google Scholar 

  247. K. R. Millington, Photoyellowing of wool. Part 1: Factors affecting photoyellowing and experimental techniques, Color. Technol., 2006, 122, 169–186.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Pattison.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattison, D.I., Rahmanto, A.S. & Davies, M.J. Photo-oxidation of proteins. Photochem Photobiol Sci 11, 38–53 (2012). https://doi.org/10.1039/c1pp05164d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05164d

Navigation