Skip to main content

Advertisement

Log in

Expression of miR-145 and miR-18b in Peripheral Blood Samples of Head and Neck Cancer Patients

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinomas (HNSCC) is one of the most prevalent type of cancer known in Indian population. Studies are needed to identify the early biomarkers for HNSCC. MicroRNAs (miRNAs) are non-coding RNA molecules, expression of which can be used as biomarker for early diagnosis of HNSCC. For miRNA profiling total RNA, which also contained small RNAs were isolated from ten HNSCC tissue samples and adjacent control. Purity and concentration of eluted RNA was assessed using the NanoDrop1000® spectrophotometer, Reverse Transcription reaction was carried out with megaplex RT primers of pool A and pool B and the expression of selected miRNAs (miR-143/145 and miR-18a/b) was measured using TaqMan primers specific for mature miRNAs. Our study showed dramatic downregulation in expression of two miRNAs, miR-18b and miR-145 in blood samples of HNSCC patients, which are inhibitor of tumorigenesis and can be targeted as biomarker of HNSCC pathogenesis therefore developing avenues for miRNA role in prognosis and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article (and its supplementary information files). All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Abbreviations

HNSCC:

Head and neck squamous cell carcinomas

miRNAs:

MicroRNAs

RNA:

Ribonucleic acid

HNC:

Head and neck cancer

CT:

Cycle threshold

ROC:

Receiver operating characteristic

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90. https://doi.org/10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Capote-Moreno A, Naval L, Muñoz-Guerra MF, Sastre J, Rodríguez-Campo FJ. Prognostic factors influencing contralateral neck lymph node metastases in oral and oropharyngeal carcinoma. J Oral Maxillofac Surg: Off J Am Assoc Oral Maxillofac Surg. 2010;68(2):268–75. https://doi.org/10.1016/j.joms.2009.09.071.

    Article  Google Scholar 

  3. O’Connor SJ. Continuing disparities in survival rates between younger and older cancer patients in Europe. Might oral chemotherapy provide one solution to the problem? Eur J Cancer Care. 2010;19(4):421–3. https://doi.org/10.1111/j.1365-2354.2010.01200.x.

    Article  CAS  Google Scholar 

  4. Yadav SK, Pandey A, Sarkar S, Yadav SS, Parmar D, Yadav S. Identification of altered blood MicroRNAs and plasma proteins in a rat model of parkinson’s disease. Mol Neurobiol. 2022;59(3):1781–98. https://doi.org/10.1007/s12035-021-02636-y.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  6. Griffiths-Jones S. The microRNA Registry. Nucleic acids research. 2004; 32(Database issue):D109–11; https://doi.org/10.1093/nar/gkh023.

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. https://doi.org/10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  9. Cowland JB, Hother C, Grønbaek K. MicroRNAs and cancer. APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 2007;115(10):1090–106. https://doi.org/10.1111/j.1600-0463.2007.apm_775.xml.x.

    Article  CAS  PubMed  Google Scholar 

  10. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of MicroRNA expression in Cancer. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051723.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and -145 in colon cancer. DNA Cell Biol. 2007;26(5):311–20. https://doi.org/10.1089/dna.2006.0550.

    Article  CAS  PubMed  Google Scholar 

  12. Dar AA, Majid S, Rittsteuer C, de Semir D, Bezrookove V, Tong S, et al. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst. 2013;105(6):433–42. https://doi.org/10.1093/jnci/djt003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 2013;13(1):51. https://doi.org/10.1186/1475-2867-13-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene. 2010;29(50):6569–80. https://doi.org/10.1038/onc.2010.386.

    Article  CAS  PubMed  Google Scholar 

  15. Bufalino A, Cervigne NK, de Oliveira CE, Fonseca FP, Rodrigues PC, Macedo CC, et al. Low miR-143/miR-145 Cluster Levels Induce Activin A Overexpression in Oral Squamous Cell Carcinomas, Which Contributes to Poor Prognosis. PloS one. 2015; 10(8):e0136599; https://doi.org/10.1371/journal.pone.0136599.

  16. Larsson E, Fredlund Fuchs P, Heldin J, Barkefors I, Bondjers C, Genové G, et al. Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med. 2009;1(11):108. https://doi.org/10.1186/gm108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Guo H, Zhang H, Wang H, Qian G, Fan X, et al. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer. 2011;117(1):86–95. https://doi.org/10.1002/cncr.25522.

    Article  CAS  PubMed  Google Scholar 

  18. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 2007;98(12):1914–20. https://doi.org/10.1111/j.1349-7006.2007.00618.x.

    Article  CAS  PubMed  Google Scholar 

  19. Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sørensen KD, et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29(7):1073–84. https://doi.org/10.1038/onc.2009.395.

    Article  CAS  PubMed  Google Scholar 

  20. Spizzo R, Nicoloso MS, Lupini L, Lu Y, Fogarty J, Rossi S, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. 2010;17(2):246–54. https://doi.org/10.1038/cdd.2009.117.

    Article  CAS  PubMed  Google Scholar 

  21. Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, et al. Good or not good: role of miR-18a in cancer biology. Rep Pract Oncol Radiother: J Greatpoland Cancer Center Poznan Polish Soc Radiat Oncol. 2020;25(5):808–19. https://doi.org/10.1016/j.rpor.2020.07.006.

    Article  Google Scholar 

  22. Aho S, Buisson M, Pajunen T, Ryoo YW, Giot JF, Gruffat H, et al. Ubinuclein, a novel nuclear protein interacting with cellular and viral transcription factors. J Cell Biol. 2000;148(6):1165–76. https://doi.org/10.1083/jcb.148.6.1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu J, Du W, Wang X, Wei L, Pan Y, Wu X, et al. Erratum: ras-related protein Rap2c promotes the migration and invasion of human osteosarcoma cells. Oncol Lett. 2021;21(6):462. https://doi.org/10.3892/ol.2021.12723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taniguchi K, Iwatsuki A, Sugito N, Shinohara H, Kuranaga Y, Oshikawa Y, et al. Oncogene RNA helicase DDX6 promotes the process of c-Myc expression in gastric cancer cells. Mol Carcinog. 2018;57(5):579–89. https://doi.org/10.1002/mc.22781.

    Article  CAS  PubMed  Google Scholar 

  25. Yan SM, Tang JJ, Huang CY, Xi SY, Huang MY, Liang JZ, et al. Reduced expression of ZDHHC2 is associated with lymph node metastasis and poor prognosis in gastric adenocarcinoma. PloS one. 2013;8(2):e56366; https://doi.org/10.1371/journal.pone.0056366.

  26. Liao JC, Yang TT, Weng RR, Kuo CT, Chang CW. TTBK2: a tau protein kinase beyond tau phosphorylation. BioMed Res Int. 2015;2015:575170; https://doi.org/10.1155/2015/575170.

  27. Deb S, Xu H, Tuynman J, George J, Yan Y, Li J, et al. RAD21 cohesin overexpression is a prognostic and predictive marker exacerbating poor prognosis in KRAS mutant colorectal carcinomas. Br J Cancer. 2014;110(6):1606–13. https://doi.org/10.1038/bjc.2014.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho YG, Kim CJ, Song JH, Rhie DJ, Park YK, Kim SY, et al. Genetic and expression analysis of the KCNRG gene in hepatocellular carcinomas. Exp Mol Med. 2006;38(3):247–55. https://doi.org/10.1038/emm.2006.30.

    Article  CAS  PubMed  Google Scholar 

  29. Yan D, Shen M, Du Z, Cao J, Tian Y, Zeng P, et al. Developing ZNF gene signatures predicting radiosensitivity of patients with breast Cancer. J Oncol. 2021;2021:9255494; https://doi.org/10.1155/2021/9255494.

  30. Xiao Y, Chen Y, Peng A, Dong J. The phosphatase CTDSPL2 is phosphorylated in mitosis and a target for restraining tumor growth and motility in pancreatic cancer. Cancer Lett. 2022;526:53–65; https://doi.org/10.1016/j.canlet.2021.11.018.

Download references

Acknowledgments

Authors acknowledge Council of Scientific and Industrial Research (CSIR) for funding the work carried out in the present study through InDepth project (BSC0111). Nishant Singh and Sanjeev Kumar Yadav is grateful CSIR, New Delhi, for providing JRF/SRF fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Arun Kumar Yadav, MLB Bhatt, Sanjay Yadav]; Methodology: [Arun Kumar Yadav, Sanjay Yadav]; Formal analysis and investigation: [Arun Kumar Yadav, Nishant Singh, Sanjeev Kumar Yadav, Amit Pandey, Dev Kumar Yadav], Writing – original draft preparation: [Arun Kumar Yadav, Nishant Singh, Sanjeev Kumar Yadav, Sanjay Yadav]; Writing - review and editing: [Arun Kumar Yadav, Nishant Singh, Sanjeev Kumar Yadav, Sanjay Yadav], Supervision: [MLB Bhatt, Sanjay Yadav].

Corresponding author

Correspondence to Arun Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animals rights

The study was approved by the Institutional Ethics committee of King George’s Medical University (KGMU) U.P., India (1667/Ethics/R.cell-17). The methods employed in this investigation follow the guidelines laid out in the Declaration of Helsinki.

Informed consent

A written informed consent was obtained from the study participant or legal guardian and was explained about the study procedure.

Consent to participate

All the participants or legal guardians are provided written informed consent for the participation in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 185 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Singh, N., Yadav, S.K. et al. Expression of miR-145 and miR-18b in Peripheral Blood Samples of Head and Neck Cancer Patients. Ind J Clin Biochem 38, 528–535 (2023). https://doi.org/10.1007/s12291-023-01119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-023-01119-2

Keywords

Navigation