Skip to main content

Advertisement

Log in

Identification of Altered Blood MicroRNAs and Plasma Proteins in a Rat Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the age-related neurological disorder characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). PD is based on motor deficits which start to appear when up to 80% of the DA neurons of SNpc have been lost. Effective management of PD requires the development of novel biomarkers. Therefore, the present study aimed to characterize biomarkers of PD using miRNomics, proteomics, and bioinformatics approaches. Rats exposed to rotenone (2.5 mg/kg b.wt) for 2 months were used as an animal model to identify the unbiased set of miRNAs and proteins deregulated in blood samples. OpenArray, a real-time PCR-based array, is used for high-throughput profiling of miRNAs, and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was used to carry out the global protein profiling. Systematic bioinformatics analysis of miRNAs and proteins was also performed, including annotation, functional classification and functional enrichment, network analysis, and miRNA–protein interaction analysis. Expression of 19 miRNAs and 96 proteins was significantly upregulated in the blood, while 22 proteins were significantly downregulated in blood samples of rotenone-exposed rats. In silico pathway analysis of deregulated proteins and miRNAs in rotenone-exposed rats has identified multiple pathways leading to PD. In summary, we have identified a set of miRNAs (miR-144, miR-96, and miR-29a) and proteins (PLP1, TUBB4A, and TUBA1C), which can be used as a potential biomarker of PD, while further validation required large human population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4 
Fig. 5
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 
Fig. 10 

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and its supplementary information files).

Code Availability

NCBI-GEO accession number, GSE180996, and CCMS-MassIVE accession number, MSV000087910.

References

  1. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324. https://doi.org/10.1111/jnc.13691

    Article  CAS  PubMed  Google Scholar 

  2. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  Google Scholar 

  3. Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242. https://doi.org/10.1177/0891988710383572

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290. https://doi.org/10.1016/j.nbd.2009.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46(Suppl 1):S30-s33. https://doi.org/10.1016/j.parkreldis.2017.07.033

    Article  PubMed  Google Scholar 

  6. Spitzer AL, Hakim EW (2008) Parkinson's disease: the interplay of medical and surgical treatment options with physical therapy. Acute Care Perspectives 17 (4)

  7. Hughes AJ, Daniel SE, Lees AJ (2001) Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 57(8):1497–1499. https://doi.org/10.1212/wnl.57.8.1497

    Article  CAS  PubMed  Google Scholar 

  8. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64(3 Suppl 1):S40-46. https://doi.org/10.1016/j.metabol.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  9. Yadav S, Jauhari A, Singh N, Singh T, Srivastav AK, Singh P, Pant A, Parmar D (2015) MicroRNAs are emerging as most potential molecular biomarkers. Biochemistry & Analytical Biochemistry 4(2161–1009):1000191. https://doi.org/10.4172/2161-1009.1000191

    Article  CAS  Google Scholar 

  10. Shinde S, Mukhopadhyay S, Mohsen G, Khoo SK (2015) Biofluid-based microRNA biomarkers for Parkinson’s disease: an overview and update. AIMS Medical Science 2:15–25. https://doi.org/10.3934/medsci.2015.1.15

    Article  Google Scholar 

  11. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2):276. https://doi.org/10.3390/cells9020276

    Article  CAS  PubMed Central  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  13. Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133(5):640–652. https://doi.org/10.1111/jnc.13089

    Article  CAS  PubMed  Google Scholar 

  14. Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB, Parmar D, Yadav S (2015) Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research 4(6):1578–1586. https://doi.org/10.1039/c5tx00200a

    Article  CAS  Google Scholar 

  15. Yadav S, Pandey A, Shukla A, Talwelkar SS, Kumar A, Pant AB, Parmar D (2011) miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem 286(43):37347–37357. https://doi.org/10.1074/jbc.M111.235531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jauhari A, Singh T, Mishra S, Shankar J, Yadav S (2020) Coordinated action of miR-146a and parkin gene regulate rotenone-induced neurodegeneration. Toxicol Sci 176(2):433–445. https://doi.org/10.1093/toxsci/kfaa066

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava AK, Yadav SS, Mishra S, Yadav SK, Parmar D, Yadav S (2020) A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells. Nanotoxicology 14(6):757–773. https://doi.org/10.1080/17435390.2020.1759726

    Article  CAS  PubMed  Google Scholar 

  18. Pienaar IS, Daniels WM, Götz J (2008) Neuroproteomics as a promising tool in Parkinson’s disease research. J Neural Transm (Vienna) 115(10):1413–1430. https://doi.org/10.1007/s00702-008-0070-3

    Article  CAS  Google Scholar 

  19. Ahn SM, Simpson RJ (2007) Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin Appl 1(9):1004–1015. https://doi.org/10.1002/prca.200700217

    Article  CAS  PubMed  Google Scholar 

  20. Tapias V (2019) Editorial: mitochondrial dysfunction and neurodegeneration. Front Neurosci 13:1372. https://doi.org/10.3389/fnins.2019.01372

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18(5):21. https://doi.org/10.1007/s11910-018-0829-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324. https://doi.org/10.1016/s0166-4328(02)00180-8

    Article  CAS  PubMed  Google Scholar 

  23. Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22(2):404–420. https://doi.org/10.1016/j.nbd.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Moon Y, Lee KH, Park JH, Geum D, Kim K (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93(5):1199–1208. https://doi.org/10.1111/j.1471-4159.2005.03112.x

    Article  CAS  PubMed  Google Scholar 

  25. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. https://doi.org/10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  26. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179(1):9–16. https://doi.org/10.1006/exnr.2002.8072

    Article  CAS  PubMed  Google Scholar 

  27. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A 105(38):14503–14508. https://doi.org/10.1073/pnas.0803998105

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koh H, Chung J (2012) PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol Cells 34(1):7–13. https://doi.org/10.1007/s10059-012-0100-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116. https://doi.org/10.1016/j.neuro.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Noordzij M, Tripepi G, Dekker FW, Zoccali C, Tanck MW, Jager KJ (2010) Sample size calculations: basic principles and common pitfalls. Nephrol Dial Transplant 25(5):1388–1393. https://doi.org/10.1093/ndt/gfp732

    Article  PubMed  Google Scholar 

  31. Florey CD (1993) Sample size for beginners Bmj 306(6886):1181–1184. https://doi.org/10.1136/bmj.306.6886.1181

    Article  CAS  PubMed  Google Scholar 

  32. Tatura R, Kraus T, Giese A, Arzberger T, Buchholz M, Höglinger G, Müller U (2016) Parkinson’s disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord 33:115–121. https://doi.org/10.1016/j.parkreldis.2016.09.028

    Article  PubMed  Google Scholar 

  33. Wilhelmus MM, Nijland PG, Drukarch B, de Vries HE, van Horssen J (2012) Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radic Biol Med 53(4):983–992. https://doi.org/10.1016/j.freeradbiomed.2012.05.040

    Article  CAS  PubMed  Google Scholar 

  34. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32(12):2316.e2317-2327. https://doi.org/10.1016/j.neurobiolaging.2010.03.014

    Article  CAS  Google Scholar 

  35. Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125(Pt 3):551–561. https://doi.org/10.1093/brain/awf043

    Article  PubMed  Google Scholar 

  36. Wojtera M, Sikorska B, Sobow T, Liberski PP (2005) Microglial cells in neurodegenerative disorders. Folia Neuropathol 43(4):311–321

    CAS  PubMed  Google Scholar 

  37. Dong Y, Han LL, Xu ZX (2018) Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson’s disease. Mol Med 24(1):61. https://doi.org/10.1186/s10020-018-0059-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Heide LP, Smidt MP (2013) The BCL2 code to dopaminergic development and Parkinson’s disease. Trends Mol Med 19(4):211–216. https://doi.org/10.1016/j.molmed.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  39. Tokuoka H, Muramatsu S, Sumi-Ichinose C, Sakane H, Kojima M, Aso Y, Nomura T, Metzger D, Ichinose H (2011) Compensatory regulation of dopamine after ablation of the tyrosine hydroxylase gene in the nigrostriatal projection. J Biol Chem 286(50):43549–43558. https://doi.org/10.1074/jbc.M111.284729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+ -induced neurodegeneration. J Neurochem 115(1):247–258. https://doi.org/10.1111/j.1471-4159.2010.06924.x

    Article  CAS  PubMed  Google Scholar 

  41. Rakovic A, Grünewald A, Voges L, Hofmann S, Orolicki S, Lohmann K, Klein C (2011) PINK1-interacting proteins: proteomic analysis of overexpressed PINK1. Parkinsons Dis 2011:153979. https://doi.org/10.4061/2011/153979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sedighi M, Baluchnejadmojarad T, Fallah S, Moradi N, Afshin-Majdd S, Roghani M (2019) Klotho ameliorates cellular inflammation via suppression of cytokine release and upregulation of miR-29a in the PBMCs of diagnosed Alzheimer’s disease patients. J Mol Neurosci 69(1):157–165. https://doi.org/10.1007/s12031-019-01345-5

    Article  CAS  PubMed  Google Scholar 

  43. Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A (2017) MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 15(1):9. https://doi.org/10.1186/s12915-017-0354-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Serafin A, Foco L, Zanigni S, Blankenburg H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli P, Pramstaller PP, Hicks AA, Domingues FS, Schwienbacher C (2015) Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 84(7):645–653. https://doi.org/10.1212/wnl.0000000000001258

    Article  CAS  PubMed  Google Scholar 

  45. Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, Shi J, Jia L (2012) Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res 216(2):225–230. https://doi.org/10.1007/s00221-011-2925-3

    Article  CAS  PubMed  Google Scholar 

  46. Hayashi T, Ishimori C, Takahashi-Niki K, Taira T, Kim YC, Maita H, Maita C, Ariga H, Iguchi-Ariga SM (2009) DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 390(3):667–672. https://doi.org/10.1016/j.bbrc.2009.10.025

    Article  CAS  PubMed  Google Scholar 

  47. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013:683920. https://doi.org/10.1155/2013/683920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35(7):1712–1721. https://doi.org/10.1016/j.neurobiolaging.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koob AO, Ubhi K, Paulsson JF, Kelly J, Rockenstein E, Mante M, Adame A, Masliah E (2010) Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Exp Neurol 221(2):267–274. https://doi.org/10.1016/j.expneurol.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  50. Gallardo G, Schlüter OM, Südhof TC (2008) A molecular pathway of neurodegeneration linking alpha-synuclein to ApoE and Abeta peptides. Nat Neurosci 11(3):301–308. https://doi.org/10.1038/nn2058

    Article  CAS  PubMed  Google Scholar 

  51. Wilhelmus MM, Bol JG, Van Haastert ES, Rozemuller AJ, Bu G, Drukarch B, Hoozemans JJ (2011) Apolipoprotein E and LRP1 increase early in Parkinson’s disease pathogenesis. Am J Pathol 179(5):2152–2156. https://doi.org/10.1016/j.ajpath.2011.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo Y, Hua X (2020) MicroRNA-181a-5p down-regulation presents neuroprotective effect in 1-methyl-4-phenylpyridinium-induced Parkinson’s disease: an in vitro study. Journal of Biomaterials and Tissue Engineering 10(1):63–70. https://doi.org/10.1166/jbt.2020.2219

    Article  Google Scholar 

  53. Hegarty SV, Sullivan AM, O’Keeffe GW (2018) Inhibition of miR-181a promotes midbrain neuronal growth through a Smad1/5-dependent mechanism: implications for Parkinson’s disease. Neuronal Signal 2(1):Ns20170181. https://doi.org/10.1042/ns20170181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, Wu J, Xie W, Zhang Y, Xu N (2016) MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget 7(27):42274–42287. https://doi.org/10.18632/oncotarget.9786

    Article  PubMed  PubMed Central  Google Scholar 

  55. Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9(5):e94839. https://doi.org/10.1371/journal.pone.0094839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwienbacher C, Foco L, Picard A, Corradi E, Serafin A, Panzer J, Zanigni S, Blankenburg H, Facheris MF, Giannini G, Falla M, Cortelli P, Pramstaller PP, Hicks AA (2017) Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 62(2):244–254. https://doi.org/10.1007/s12031-017-0926-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Sanjeev Kumar Yadav is grateful to CSIR, New Delhi, for providing JRF/SRF fellowship. The technical support provided by the IITR — central instrumental (HPLC-ECD) facility for the quantification of neurotransmitters, is also acknowledged. The CSIR-IITR communication reference number is IITR/SEC/2021-2022/22.

Funding

The funding of the present study has been provided by the Science and Engineering Research Board (SERB), New Delhi (Grant Sanction no. EMR/2016/002965).

Author information

Authors and Affiliations

Authors

Contributions

Sanjay Yadav and Devendra Parmar have planned the study and monitored it throughout and prepared the final draft of the manuscript. Sanjay Yadav has guided the students in the development of protocols and new methods. Sanjeev Kumar Yadav performed all the OpenArray and proteomics experiments and data analysis and prepared the first draft of the manuscript. Anuj Pandey helped in the animal dosing experiments. Sana Sarkar helped in the real-time PCR. Smriti Singh Yadav helped in the sample processing.

Corresponding author

Correspondence to Sanjay Yadav.

Ethics declarations

Ethics Approval

All the animal experiments were approved by the Institutional Animal Ethics Committee (IAEC), CSIR—Indian Institute of Toxicology Research, Lucknow, India. The approved reference number was IITR/IAEC/08/17–36/2018.

Consent to Participate

Not applicable in animal study.

Consent for Publication

Not applicable in animal study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 780 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Pandey, A., Sarkar, S. et al. Identification of Altered Blood MicroRNAs and Plasma Proteins in a Rat Model of Parkinson’s Disease. Mol Neurobiol 59, 1781–1798 (2022). https://doi.org/10.1007/s12035-021-02636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02636-y

Keywords

Navigation