Skip to main content
Log in

A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cuprotosis, a new type of cell death, provides great opportunities for the treatment of oral squamous cell carcinoma, as nanocarriers of copper ions can induce cuprotosis and immunogenic death. Here, we studied an editor that enables production of a nanoparticle “storm” in oral squamous cell carcinoma, maximizing the toxic effect of these particles and reprogramming the tumor microenvironment; as a result, T cells and natural killer (NK) cells can infiltrate the tumor microenvironment to activate an antitumor immune response. On this basis, the editor can be combined with optical therapy to improve patient prognosis. In this study, the metal ratio was regulated in response to the nanocarrier of acid response type. Thus, in the presence of a specific copper ion content, the nanocarrier could change the permeability of the tumor cell membrane. Based on these results, the nanoparticles were cracked in an acidic environment and then released copper ions. Finally, the nanoparticles contributed to cuprotosis and immunogenic death. In addition, the editor could inhibit murine oral cancer 1 (MOC1) tumors in C57BL/6 without toxicity. The rate of tumor growth inhibition was as high as approximately 80%. This strategy provides a new idea for immunotherapy. Moreover, it can improve the interaction between immunotherapy and the copper-induced death of oral squamous cell carcinoma. Above all, this study will provide a new opportunity for the effective treatment of oral squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.

    Article  Google Scholar 

  2. Leemans, C. R.; Braakhuis, B. J. M.; Brakenhoff, R. H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22.

    Article  CAS  Google Scholar 

  3. Krishna, S.; Ulrich, P.; Wilson, E.; Parikh, F.; Narang, P.; Yang, S. S.; Read, A. K.; Kim-Schulze, S.; Park, J. G.; Posner, M. et al. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res. 2018, 78, 6159–6170.

    Article  CAS  Google Scholar 

  4. Badoual, C.; Hans, S.; Merillon, N.; Van Ryswick, C.; Ravel, P.; Benhamouda, N.; Levionnois, E.; Nizard, M.; Si-Mohamed, A.; Besnier, N. et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013, 73, 128–138.

    Article  CAS  Google Scholar 

  5. Mandal, R.; Şenbabaoğlu, Y.; Desrichard, A.; Havel, J. J.; Dalin, M. G.; Riaz, N.; Lee, K. W.; Ganly, I.; Hakimi, A. A.; Chan, T. A. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016, 1, e89829.

    Article  Google Scholar 

  6. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

    Article  CAS  Google Scholar 

  7. Tsvetkov, P.; Detappe, A.; Cai, K.; Keys, H. R.; Brune, Z.; Ying, W. W.; Thiru, P.; Reidy, M.; Kugener, G.; Rossen, J. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 2019, 15, 681–689.

    Article  CAS  Google Scholar 

  8. Kahlson, M. A.; Dixon, S. J. Copper-induced cell death. Science 2022, 375, 1231–1232.

    Article  CAS  Google Scholar 

  9. Wang, Y. Q.; Zhang, L.; Zhou, F. F. Cuproptosis: A new form of programmed cell death. Cell. Mol. Immunol. 2022, 19, 867–868.

    Article  CAS  Google Scholar 

  10. Huo, S. Q.; Wang, Q.; Shi, W.; Peng, L. L.; Jiang, Y.; Zhu, M. Y.; Guo, J. Y.; Peng, D. W.; Wang, M. R.; Men, L. T. et al. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int. J. Mol. Sci. 2023, 24, 1667.

    Article  CAS  Google Scholar 

  11. Tang, Y. Q.; Bisoyi, H. K.; Chen, X. M.; Liu, Z. Y.; Chen, X.; Zhang, S.; Li, Q. Pyroptosis-mediated synergistic photodynamic and photothermal immunotherapy enabled by a tumor-membrane-targeted photosensitive dimer. Adv. Mater. 2023, 35, 2300232.

    Article  CAS  Google Scholar 

  12. Jin, X. K.; Liang, J. L.; Zhang, S. M.; Huang, Q. X.; Zhang, S. K.; Liu, C. J.; Zhang, X. Z. Orchestrated copper-based nanoreactor for remodeling tumor microenvironment to amplify cuproptosis-mediated anti-tumor immunity in colorectal cancer. Mater. Today 2023, 68, 108–124.

    Article  CAS  Google Scholar 

  13. Huang, Q. X.; Liang, J. L.; Chen, Q. W.; Jin, X. K.; Niu, M. T.; Dong, C. Y.; Zhang, X. Z. Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma. Nano Today 2023, 51, 101911.

    Article  CAS  Google Scholar 

  14. Zhang, G. Z.; Zhan, M. S.; Zhang, C. C.; Wang, Z. Q.; Sun, H. X.; Tao, Y. C.; Shi, Q. S.; He, M. J.; Wang, H.; Rodrigues, J. et al. Redox-responsive dendrimer nanogels enable ultrasound-enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization. Adv. Sci. 2023, 10, 2301759.

    Article  CAS  Google Scholar 

  15. Li, Z.; Xiao, C.; Yong, T. Y.; Li, Z. F.; Gan, L.; Yang, X. L. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev. 2020, 49, 2273–2290.

    Article  CAS  Google Scholar 

  16. Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

    Article  CAS  Google Scholar 

  17. Guo, B. D.; Yang, F. Y.; Zhang, L. P.; Zhao, Q. X.; Wang, W. K.; Yin, L.; Chen, D.; Wang, M. S.; Han, S. J.; Xiao, H. H. et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv. Mater. 2023, 35, 2212267.

    Article  CAS  Google Scholar 

  18. Xu, Y. Z.; Liu, S. Y.; Zeng, L. L.; Ma, H. S.; Zhang, Y. F.; Yang, H. H.; Liu, Y. C.; Fang, S.; Zhao, J.; Xu, Y. S. et al. An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 2023, 35, 2300773.

    Article  CAS  Google Scholar 

  19. Duan, W. X.; Hang, L. F.; Ma, Y. C.; Wang, Q.; Tang, X. F.; Jiang, W.; Wu, Y.; Lv, W. F.; Wang, Y. C. Compartmentalized nano-MOFs as co-delivery systems for enhanced antitumor therapy. ACS Appl. Mater. Interfaces 2023, 15, 39039–39052.

    Article  CAS  Google Scholar 

  20. Gong, J. L.; Ye, C. X. Y.; Ran, J. H.; Xiong, X.; Fang, X. Y.; Zhou, X. M.; Yi, Y. T.; Lu, X.; Wang, J.; Xie, C. M. et al. Polydopamine-mediated immunomodulatory patch for diabetic periodontal tissue regeneration assisted by metformin-ZIF system. ACS Nano 2023, 17, 16573–16586.

    Article  CAS  Google Scholar 

  21. Huang, Y.; Qin, G.; Cui, T. T.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses. Nat. Commun. 2023, 14, 4647.

    Article  CAS  Google Scholar 

  22. Jin, Y. Y.; Guo, Y. S.; Yang, J. H.; Chu, X. Y.; Huang, X. M.; Wang, Q. Y.; Zeng, Y. L.; Su, L. L.; Lu, S.; Wang, C. Y. et al. A novel “inside-out” intraocular nanomedicine delivery mode for nanomaterials’ biological effect enhanced choroidal neovascularization occlusion and microenvironment regulation. Adv. Mater. 2023, 35, 2209690.

    Article  CAS  Google Scholar 

  23. Ma, L. M.; Zhou, J. L.; Wu, Q.; Luo, G. W.; Zhao, M. Z.; Zhong, G. Q.; Zheng, Y. F.; Meng, X. W.; Cheng, S.; Zhang, Y. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermochemotherapy combined with immunotherapy. Biomaterials 2023, 301, 122236.

    Article  CAS  Google Scholar 

  24. Siboro, P. Y.; Nguyen, V. K. T.; Miao, Y. B.; Sharma, A. K.; Mi, F. L.; Chen, H. L.; Chen, K. H.; Yu, Y. T.; Chang, Y.; Sung, H. W. Ultrasound-activated, tumor-specific in situ synthesis of a chemotherapeutic agent using ZIF-8 nanoreactors for precision cancer therapy. ACS Nano 2022, 16, 12403–12414.

    Article  CAS  Google Scholar 

  25. Song, Y. Z.; Han, S.; Liu, S. W.; Sun, R. N.; Zhao, L.; Yan, C. Biodegradable imprinted polymer based on ZIF-8/DOX-HA for synergistically targeting prostate cancer cells and controlled drug release with multiple responses. ACS Appl. Mater. Interfaces 2023, 15, 25339–25353.

    Article  CAS  Google Scholar 

  26. Zhao, H. X.; Li, T. T.; Yao, C.; Gu, Z.; Liu, C. X.; Li, J. H.; Yang, D. Y. Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 6034–6042.

    Article  CAS  Google Scholar 

  27. Chen, K. R.; Zhou, A. W.; Zhou, X. Y.; Liu, Y. H.; Xu, Y. R.; Ning, X. H. An intelligent cell-derived nanorobot bridges synergistic crosstalk between sonodynamic therapy and cuproptosis to promote cancer treatment. Nano Lett. 2023, 23, 3038–3047.

    Article  CAS  Google Scholar 

  28. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

    Article  CAS  Google Scholar 

  29. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  Google Scholar 

  30. Zhao, G.; Sun, H. J.; Zhang, T.; Liu, J. X. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun. Signal. 2020, 18, 45.

    Article  CAS  Google Scholar 

  31. Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

    Article  CAS  Google Scholar 

  32. Zhan, M. S.; Qiu, J. R.; Fan, Y.; Chen, L.; Guo, Y. Q.; Wang, Z. Q.; Li, J.; Majoral, J. P.; Shi, X. Y. Phosphorous dendron micelles as a nanomedicine platform for cooperative tumor chemoimmunotherapy via synergistic modulation of immune cells. Adv. Mater. 2023, 35, 2208277.

    Article  CAS  Google Scholar 

  33. Xie, J. M.; Yang, Y. N.; Gao, Y. B.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023, 22, 46.

    Article  CAS  Google Scholar 

  34. Xue, T. Y.; Zhang, Z. R.; Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

    Article  CAS  Google Scholar 

  35. Wang, M. Y.; Wang, Y. F.; Mu, Y. T.; Yang, F. X.; Yang, Z. B.; Liu, Y. X.; Huang, L. L.; Liu, S.; Guan, X. G.; Xie, Z. G. et al. Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy. Nano Res. 2023, 16, 7355–7363.

    Article  CAS  Google Scholar 

  36. Xu, M. Z.; Zhang, C. Y.; Wu, J. G.; Zhou, H. G.; Bai, R.; Shen, Z. Y.; Deng, F. L.; Liu, Y.; Liu, J. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS Appl. Mater. Interfaces 2019, 11, 5701–5713.

    Article  CAS  Google Scholar 

  37. Huang, X. X.; Liao, W. B.; Zhang, G.; Kang, S. M.; Zhang, C. Y. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int. J. Nanomed. 2017, 12, 2215–2226

    Article  CAS  Google Scholar 

  38. Kim, J. Y.; Hong, D.; Lee, J. C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 2021, 12, 3765.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (No. 2022YFC2403203-3), Jilin Province Department of Finance (No. jcsz2023481-13), the National Natural Science Foundation of China (Nos. 51972003 and 52271127), the Intergovernmental International Co-operation Project of Beijing Municipal Science and Technology Commission (No. Z221100002722004), and the 2023 Management Research Project (No. YS040223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Yuguang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Hu, J., Dong, F. et al. A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6438-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6438-3

Keywords

Navigation