Skip to main content
Log in

Study on the Reduction Properties of Thiourea Dioxide and Its Application in Discharge Printing of Polyester Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The thiourea dioxide (TDO) was tentatively applied as a reductive discharging agent onto the discharge printing of polyester fabrics. The effect of aqueous solution temperature on the reducing capacity of TDO was thoroughly investigated by measuring oxidation-reduction potentials and hydrolysis kinetic curves. The effects of TDO on disperse dyes in aqueous solution and disperse dyes printed on the surfaces of glass substrates or polyester fabrics were investigated by analyzing the color changes before and after TDO discharge treatment. It was confirmed that TDO reduction became stronger with increasing aqueous solution temperature. TDO could destroy the chromogenic groups of the selected azo-dyes in aqueous solution and on the surfaces of glass substrates. Different from cotton and silk fabrics, the discharge effect of TDO directly depended on the compact structure of the polyester fibers. When a discharge accelerant was added into white discharge pastes with TDO, the compact structure of polyester fibers was opened up to achieve a good discharge effect. This study provides a new method for TDO development and a new strategy for the discharge printing of polyester fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brierley and J. R. Provost, Color. Technol., 99, 358 (1983).

    CAS  Google Scholar 

  2. K. Karthikeyan and B. Dhurai, UTEX Res. J., 11, 61 (2011).

    Google Scholar 

  3. I. A. EI-Thalouth, F. Kantouch, S. H. Nassar, and H. M. El-Hennawi, Indian J. Fibre Text. Res., 31, 52 (2008).

    Google Scholar 

  4. M. A. Joseph and T. H. Somashekar, Color. Technol., 116, 60 (2000).

    Article  CAS  Google Scholar 

  5. G. Csekő, Y. Hu, Y. N. Song, T. R. Kégl, Q. Y. Gao, S. V. Makarov, and A. K. Horváth, Eur. J. Inorg. Chem., 11, 1875 (2014).

    Article  CAS  Google Scholar 

  6. Q. Y. Gao, B. Liu, L. H. Li, and J. C. Wang, J. Phys. Chem. A, 111, 872 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. S. V. Makarov, A. K. Horvath, R. Silaghi-Dumitrescu, and Q. Y. Gao, Chem. Eur. J., 20, 14164 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. C. K. Chua, A. Ambrosi, and M. Pumera, J. Mater. Chem., 22, 11054 (2012).

    Article  CAS  Google Scholar 

  9. J. Wang, T. Zhou, H. Deng, F. Chen, K. Wang, Q. Zhang, and Q. Fu, Colloid Surf. B-Biointerfaces, 101, 171 (2013).

    Article  CAS  Google Scholar 

  10. S. Verma, R. Singh, D. Tripathi, P. Gupta, G. M. Bahuguna, and S. L. Jain, RSC Adv., 3, 4184 (2013).

    Article  CAS  Google Scholar 

  11. L. Xu, L. Valkai, A. A. Kuznetsova, S. V. Makarov, and A. K. Horváth, Inorg. Chem., 56, 4679 (2017).

    Article  CAS  Google Scholar 

  12. Y. Hu, A. K. Horváth, S. Duan, G. Csekő, S. V. Makarov, and Q. Gao, Eur. J. Inorg. Chem., 30, 5011 (2015).

    Article  CAS  Google Scholar 

  13. P. Krug, Color. Technol., 69, 606 (1953).

    Google Scholar 

  14. S. V. Makarov, E. V. Kudrik, and K. A. Davydov, Russ. J. Gen. Chem., 76, 1599 (2006).

    Article  CAS  Google Scholar 

  15. L. A. Holt and B. Milligan, J. Text. I., 71, 117 (1980).

    Article  Google Scholar 

  16. A. Polenov, W. N. Marmer, and R. L. Dudley, Text. Res. J., 62, 94 (1992).

    Article  Google Scholar 

  17. J. Z. Shao, U.S. Patent, 9375687 (2016).

    Google Scholar 

  18. L. Zhou, J. Shan, X. Y. Liu, and J. Z. Shao, Color. Technol., 131, 149 (2015).

    Article  CAS  Google Scholar 

  19. J. Z. Shao, X. Y. Liu, P. Chen, Q. X. Wu, X. M. Zheng, and K. M. Pei, J. Phys. Chem. A, 118, 3168 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Y. V. Polenov, E. V. Makarova, and E. V. Egorova, Kinet. Catal., 55, 566 (2014).

    Article  CAS  Google Scholar 

  21. L. Yuan, T. Yang, Y. Liu, Y. Hu, Y. M. Zhao, J. H. Zheng, and Q. Y. Gao, J. Phys. Chem. A, 118, 2702 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Hu, J. M. Feng, Y. W. Li, Y. Y. Sun, L. Xu, Y. M. Zhao, and Q. Y. Gao, Sci. China. Chem., 55, 235 (2012).

    Article  CAS  Google Scholar 

  23. D. Lewis, J. Mama, and J. Hawkes, J. Appl. Spectrosc., 68, 1327 (2014).

    Article  CAS  Google Scholar 

  24. M. G. E. Albuquerque, A. T. Lopes, M. L. Serralheiro, J. M. Novais, and H. M. Pinheiro, Enzyme Microb. Technol., 36, 790 (2005).

    Article  CAS  Google Scholar 

  25. A. Mohammadi, B. Khalili, and M. Tahavor, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 150, 799 (2015).

    Article  CAS  Google Scholar 

  26. W. Sugiura, T. Miyashita, T. Yokoyama, and M. Arai, J. Biosci. Bioeng., 88, 577 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. J. E. Mclntyre, “Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin”, CRC Press, England, 2005.

    Book  Google Scholar 

  28. A. Murray and K. Mortimer, Color. Technol., 87, 6 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xie, M., Li, Y. et al. Study on the Reduction Properties of Thiourea Dioxide and Its Application in Discharge Printing of Polyester Fabrics. Fibers Polym 19, 1237–1244 (2018). https://doi.org/10.1007/s12221-018-7765-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7765-3

Keywords

Navigation