Skip to main content

Advertisement

Log in

Combinational treatment of TPEN and TPGS induces apoptosis in acute lymphoblastic and chronic myeloid leukemia cells in vitro and ex vivo

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.e., TPEN ED50: 3.2 μM and TPGS ED50: 34 μM, potency ratio R = 10.62 = TPGS (ED50)/TPEN (ED50)) were identified as dose–effect curve (%DNA fragmentation (sub-G1 phase) versus agent concentration). The most effective synergistic doses were determined according to isobole analysis. The apoptotic and oxidative stress effects of combined doses (TPEN 0.1, 0.5, 1 μM) and TPGS (5, 10, 20 μM)) were evaluated by DNA fragmentation (sub-G1 phase), mitochondrial membrane potential, oxidation of stress sensor protein DJ-1, and activation of executer protein CASPASE-3. They testified to the synergistic effect of the T2 combo (e.g., TPEN 1: TPGS 20, combination index (CI) 0.90 < 1; 1/3.2+ 20/34, > 90% induced apoptosis) in all 3 cell lines. As proof of principle, we challenged complete bone marrow (n = 5) or isolated cells from bone marrow (n = 3) samples from acute pediatric acute B-cell patients and found that T2 combo (1:20; 10:200) dramatically reduced (− 50%) the CD34+/CD19+cell population and increased significantly CD19+/CASP-3+ positive B-ALL cells up to 960%. The T2 combo neither induced DNA fragmentation, altered ΔΨm, nor induced oxidation of stress sensor protein DJ-1, nor activated CASP-3 in PBL cells. We conclude that by using different combinations of TPEN and TPGS, a more efficient treatment strategy can be developed for leukemia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data and materials are within the paper.

References

  1. Sabattini E, Bacci F, Sagramoso C, Pileri SA. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica. 2010;102(3):83–7.

    CAS  PubMed  Google Scholar 

  2. Besbes S, Hamadou WS, Boulland ML, Youssef YB, Achour B, Regaieg H, Khelif A, Fest T, Soua Z. Minimal residual disease detection in tunisian B-acute lymphoblastic leukemia based on immunoglobulin gene rearrangements. Braz J Med Biol Res. 2017;50(1):e5426. https://doi.org/10.1590/1414-431X20165426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20(3):e142–54. https://doi.org/10.1016/s1470-2045(19)30031-2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524–39. https://doi.org/10.3324/haematol.2020.247031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oskarsson T, Söderhäll S, Arvidson J, Forestier E, Montgomery S, Bottai M, Lausen B, Carlsen N, Hellebostad M, Lähteenmäki P, Saarinen-Pihkala UM, Jónsson Ó, Heyman M, group NSoPHaONArw. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica. 2016;101(1):68–76. https://doi.org/10.3324/haematol.2015.131680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood. 2020;136(16):1803–12. https://doi.org/10.1182/blood.2019004043.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang R, Zhu H, Yuan Y, Zhao J, Yang X, Tian Z. Risk factors for relapse of childhood B cell acute lymphoblastic leukemia. Med Sci Monit. 2020;26:e923271. https://doi.org/10.12659/MSM.923271.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wong S, Witte ON. The BCR-ABL story: bench to bedside and back. Annu Rev Immunol. 2004;22:247–306. https://doi.org/10.1146/annurev.immunol.22.012703.104753.

    Article  CAS  PubMed  Google Scholar 

  9. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol. 2020;95(6):691–709. https://doi.org/10.1002/ajh.25792.

    Article  CAS  PubMed  Google Scholar 

  10. Hehlmann R, Jung-Munkwitz S, Saussele S. Treatment of chronic myeloid leukemia when imatinib fails. Expert Opin Pharmacother. 2011;12(2):269–83. https://doi.org/10.1517/14656566.2011.533169.

    Article  CAS  PubMed  Google Scholar 

  11. Massimino M, Stella S, Tirrò E, Pennisi MS, Vitale SR, Puma A, Romano C, Di Gregorio S, Tomarchio C, Di Raimondo F, Manzella L. ABL1-directed inhibitors for CML: efficacy, resistance and future perspectives. Anticancer Res. 2020;40(5):2457–65. https://doi.org/10.21873/anticanres.14215.

    Article  CAS  PubMed  Google Scholar 

  12. Alves R, Gonçalves AC, Rutella S, Almeida AM, De Las RJ, Trougakos IP, Sarmento Ribeiro AB. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13194820.

    Article  PubMed Central  Google Scholar 

  13. Rathore R, McCallum JE, Varghese E, Florea AM, Busselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis. 2017. https://doi.org/10.1007/s10495-017-1375-1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G. Regulated cell death and adaptive stress responses. Cell Mol Life Sci. 2016;73(11–12):2405–10. https://doi.org/10.1007/s00018-016-2209-y.

    Article  CAS  PubMed  Google Scholar 

  16. Lee DK, Chang VY, Kee T, Ho CM, Ho D. Optimizing combination therapy for acute lymphoblastic leukemia using a phenotypic personalized medicine digital health platform: retrospective optimization individualizes patient regimens to maximize efficacy and safety. SLAS Technol. 2017;22(3):276–88. https://doi.org/10.1177/2211068216681979.

    Article  PubMed  Google Scholar 

  17. Westerweel PE, Te Boekhorst PAW, Levin MD, Cornelissen JJ. New approaches and treatment combinations for the management of chronic myeloid leukemia. Front Oncol. 2019;9:665. https://doi.org/10.3389/fonc.2019.00665.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stokke JL, Bhojwani D. Antibody-drug conjugates for the treatment of acute pediatric leukemia. J Clin Med. 2021. https://doi.org/10.3390/jcm10163556.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng S, Aldahdooh J, Shadbahr T, Wang Y, Aldahdooh D, Bao J, Wang W, Tang J. DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal. Nucleic Acids Res. 2021;49(W1):W174–84. https://doi.org/10.1093/nar/gkab438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reczek C, Chandel N. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol. 2017;1:79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808.

    Article  Google Scholar 

  21. Liu J, Wang Z. Increased oxidative stress as a selective anticancer therapy. Oxid Med Cell Longev. 2015;2015:294303. https://doi.org/10.1155/2015/294303.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22(11):1321–35. https://doi.org/10.1007/s10495-017-1424-9.

    Article  CAS  PubMed  Google Scholar 

  23. Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:5381692. https://doi.org/10.1155/2019/5381692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. https://doi.org/10.1038/s12276-020-0384-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. TPEN induces apoptosis independently of zinc chelator activity in a model of acute lymphoblastic leukemia and ex vivo acute leukemia cells through oxidative stress and mitochondria caspase-3- and AIF-dependent pathways. Oxid Med Cell Longev. 2012;2012:313275. https://doi.org/10.1155/2012/313275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mendivil-Perez M, Velez-Pardo C, David-Yepes GE, Fox JE, Jimenez-Del-Rio M. TPEN exerts selective anti-leukemic efficacy in ex vivo drug-resistant childhood acute leukemia. Biometals. 2021;34(1):49–66. https://doi.org/10.1007/s10534-020-00262-0.

    Article  CAS  PubMed  Google Scholar 

  27. Mendivil-Perez M, Velez-Pardo C, Quiroz-Duque L, Restrepo-Rincon A, Valencia-Zuluaga N, Jimenez-Del-Rio M (2021) TPEN selectively eliminates lymphoblastic B cells from bone marrow pediatric acute lymphoblastic leukemia patients. Preprints https://doi.org/10.20944/preprints202103.0611.v2

  28. Rojas-Valencia L, Velez-Pardo C, Jimenez-Del-Rio M. Metal chelator TPEN selectively induces apoptosis in K562 cells through reactive oxygen species signaling mechanism: implications for chronic myeloid leukemia. Biometals. 2017. https://doi.org/10.1007/s10534-017-0015-0.

    Article  PubMed  Google Scholar 

  29. Velez-Pardo C, Jimenez-Del-Rio M. Helping leukemia cells to die with natural or chemical compounds through H2O2 signaling. In: Chakraborti S, Ray B, Roychoudhury S, editors. Handbook of oxidative stress in cancer: mechanistic aspects. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-4501-6_45-1.

    Chapter  Google Scholar 

  30. Abu-Fayyad A, Nazzal S. Synthesis, characterization, and in-vitro antitumor activity of the polyethylene glycol (350 and 1000) succinate derivatives of the tocopherol and tocotrienol isomers of vitamin E. Int J Pharm. 2017;519(1–2):145–56. https://doi.org/10.1016/j.ijpharm.2017.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruiz-Moreno C, Jimenez-Del-Rio M, Sierra-Garcia L, Lopez-Osorio B, Velez-Pardo C. Vitamin E synthetic derivate-TPGS-selectively induces apoptosis in jurkat t cells via oxidative stress signaling pathways: implications for acute lymphoblastic leukemia. Apoptosis. 2016;21(9):1019–32. https://doi.org/10.1007/s10495-016-1266-x.

    Article  CAS  PubMed  Google Scholar 

  32. Calvo-Alvarez J, Jimenez-Del-Rio M, Velez-Pardo C. Vitamin E TPGS 1000 induces apoptosis in the K562 cell line: implications for chronic myeloid leukemia. Oxid Med Cell Longev. 2021;2021:5580288. https://doi.org/10.1155/2021/5580288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruiz-Moreno C, Velez-Pardo C, Jimenez-Del-Rio M. Vitamin E d-alpha-tocopheryl polyethylene glycol succinate (TPGS) provokes cell death in human neuroblastoma SK-N-SH cells via a pro-oxidant signaling mechanism. Chem Res Toxicol. 2018;31(9):945–53. https://doi.org/10.1021/acs.chemrestox.8b00138.

    Article  CAS  PubMed  Google Scholar 

  34. Tallarida RJ. Drug combinations: tests and analysis with isoboles. Curr Protoc Pharmacol. 2016;72:9.19.11-19.19.19. https://doi.org/10.1002/0471141755.ph0919s72.

    Article  Google Scholar 

  35. Huang RY, Pei L, Liu Q, Chen S, Dou H, Shu G, Yuan ZX, Lin J, Peng G, Zhang W, Fu H. Isobologram analysis: a comprehensive review of methodology and current research. Front Pharmacol. 2019;10:1222. https://doi.org/10.3389/fphar.2019.01222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kinumi T, Kimata J, Taira T, Ariga H, Niki E. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2004;317(3):722–8. https://doi.org/10.1016/j.bbrc.2004.03.110.

    Article  CAS  PubMed  Google Scholar 

  37. Ariga H, Iguchi-Ariga SMM. Introduction/overview. Adv Exp Med Biol. 2017;1037:1–4. https://doi.org/10.1007/978-981-10-6583-5_1.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson RW, Sowder ME, Giaccia AJ. Hypoxia and bone metastatic disease. Curr Osteoporos Rep. 2017;15(4):231–8. https://doi.org/10.1007/s11914-017-0378-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Duarte D, Hawkins ED, Lo Celso C. The interplay of leukemia cells and the bone marrow microenvironment. Blood. 2018;131(14):1507–11. https://doi.org/10.1182/blood-2017-12-784132.

    Article  CAS  PubMed  Google Scholar 

  40. Bӧhm JW, Sia KCS, Jones C, Evans K, Mariana A, Pang I, Failes T, Zhong L, Mayoh C, Landman R, Collins R, Erickson SW, Arndt G, Raftery MJ, Wilkins MR, Norris MD, Haber M, Marshall GM, Lock RB. Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia. Leukemia. 2021;35(11):3101–12. https://doi.org/10.1038/s41375-021-01248-8.

    Article  CAS  PubMed  Google Scholar 

  41. Hijiya N, Suttorp M. How I treat chronic myeloid leukemia in children and adolescents. Blood. 2019;133(22):2374–84. https://doi.org/10.1182/blood.2018882233.

    Article  CAS  PubMed  Google Scholar 

  42. Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug combination in cancer treatment-from cocktails to conjugated combinations. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13040669.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge pediatric patients for donating ex vivo B-ALL, and control samples (Table 2) and special thanks to JE Fox (MD) for clinical characterization of patient samples at Children’s Hospital Universitario San Vicente Fundación.

Funding

This study was funded by “Fundacion Alfonso Moreno Jaramillo” Grant #2020-31631 to CV-P. The funders had no role in study design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MJ-D-R, CV-P; Formal analysis: MM-P; Investigation: MM-P, MJ-D-R, CV-P; Methodology: MM-P; Project administration: MJ-D-R, CV-P; Resources: CV-P; Supervision: MJ-D-R, CV-P; Visualization: MM-P; Writing—original draft: MJ-D-R, CV-P; Writing—review and editing: MM-P, MJ-D-R, CV-P.

Corresponding authors

Correspondence to Marlene Jimenez-Del-Rio or Carlos Velez-Pardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Ethical approval

All procedures performed in studies involving human participants were following the ethical standards of the Ethics Committee for Research Act # 04-2018 from Children’s Hospital Universitario San Vicente Fundación and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from pediatric ex vivo B-ALL and control cells collected in the study.

Consent for publication

Consent for publication was obtained from pediatric ex vivo B-ALL and control cells collected in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendivil-Perez, M., Jimenez-Del-Rio, M. & Velez-Pardo, C. Combinational treatment of TPEN and TPGS induces apoptosis in acute lymphoblastic and chronic myeloid leukemia cells in vitro and ex vivo. Med Oncol 39, 109 (2022). https://doi.org/10.1007/s12032-022-01697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01697-w

Keywords

Navigation