Skip to main content
Log in

Regulated cell death and adaptive stress responses

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lombard J, Lopez-Garcia P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515. doi:10.1038/nrmicro2815

    CAS  PubMed  Google Scholar 

  2. Orgel LE (1998) The origin of life—a review of facts and speculations. Trends Biochem Sci 23:491–495

    Article  CAS  PubMed  Google Scholar 

  3. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15:166–180. doi:10.1038/nrc3891

    Article  CAS  PubMed  Google Scholar 

  4. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. doi:10.1038/nrm3270

    CAS  PubMed  Google Scholar 

  6. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719. doi:10.1038/nrd3976

    Article  CAS  PubMed  Google Scholar 

  7. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773. doi:10.1038/cdd.2009.219

    Article  CAS  PubMed  Google Scholar 

  8. Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175:521–525. doi:10.1083/jcb.200608098

    Article  PubMed  PubMed Central  Google Scholar 

  9. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660. doi:10.1016/j.mib.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  10. Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315. doi:10.1038/nrm1358

    Article  CAS  PubMed  Google Scholar 

  11. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120. doi:10.1038/cdd.2011.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. doi:10.1038/cdd.2008.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi:10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  14. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3:e955691. doi:10.4161/21624011.2014.955691

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758. doi:10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159:1263–1276. doi:10.1016/j.cell.2014.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345:1250256. doi:10.1126/science.1250256

    Article  PubMed  PubMed Central  Google Scholar 

  18. Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16:728–736. doi:10.1038/ncb3005

    Article  CAS  PubMed  Google Scholar 

  19. Sica V, Galluzzi L, Bravo-San Pedro JM, Izzo V, Maiuri MC, Kroemer G (2015) Organelle-specific initiation of autophagy. Mol Cell 59:522–539. doi:10.1016/j.molcel.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  20. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. doi:10.1038/nrm3311

    Article  CAS  PubMed  Google Scholar 

  21. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846. doi:10.1038/nrd4145

    Article  CAS  PubMed  Google Scholar 

  22. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117. doi:10.1038/nrm3048

    Article  CAS  PubMed  Google Scholar 

  23. Concha-Benavente F, Srivastava RM, Ferrone S, Ferris RL (2013) EGFR-mediated tumor immunoescape: the imbalance between phosphorylated STAT1 and phosphorylated STAT3. Oncoimmunology 2:e27215. doi:10.4161/onci.27215

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14:197–210

    Article  CAS  Google Scholar 

  25. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405. doi:10.1038/nrm4007

    Article  CAS  PubMed  Google Scholar 

  26. Zirngibl K, Moll UM (2013) p53 further extends its reach. Oncoimmunology 2:e24959. doi:10.4161/onci.24959

    Article  PubMed  PubMed Central  Google Scholar 

  27. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880. doi:10.15252/embj.201490784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185. doi:10.1016/j.ceb.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  29. Bieging KT, Attardi LD (2012) Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol 22:97–106. doi:10.1016/j.tcb.2011.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bishehsari F, Gach JS, Akagi N, Webber MK, Bauer J, Jung BH (2014) Anti-p21 autoantibodies detected in colorectal cancer patients: a proof of concept study. Oncoimmunology 3:e952202. doi:10.4161/21624011.2014.952202

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274. doi:10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  32. Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buque A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L (2015) eIF2alpha phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 33:86–92. doi:10.1016/j.semcancer.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Siekierka J, Manne V, Ochoa S (1984) Mechanism of translational control by partial phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Proc Natl Acad Sci USA 81:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarnow P (1989) Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc Natl Acad Sci USA 86:5795–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274. doi:10.1073/pnas.0400541101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939. doi:10.1126/science.1101902

    Article  CAS  PubMed  Google Scholar 

  38. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490. doi:10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. doi:10.1038/cdd.2014.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  41. Le Bert N, Lam AR, Ho SS, Shen YJ, Liu MM, Gasser S (2014) STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression. Oncoimmunology 3:e29259. doi:10.4161/onci.29259

    Article  PubMed  PubMed Central  Google Scholar 

  42. Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788. doi:10.1038/nrm3479

    Article  CAS  PubMed  Google Scholar 

  43. Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L (2014) Trial watch: immunostimulatory cytokines in cancer therapy. Oncoimmunology 3:e29030. doi:10.4161/onci.29030

    Article  PubMed  PubMed Central  Google Scholar 

  44. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103. doi:10.1038/nri3787

    Article  CAS  PubMed  Google Scholar 

  45. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. doi:10.1038/nature09907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018. doi:10.1371/journal.ppat.1000018

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875. doi:10.1038/nrc3380

    Article  CAS  PubMed  Google Scholar 

  48. Kanegasaki S, Tsuchiya T (2014) Alarmins released during local antitumor treatments play an essential role in enhancing tumor growth inhibition at treated and non-treated sites via a derivative of CCL3. Oncoimmunology 3:e958956. doi:10.4161/21624011.2014.958956

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223. doi:10.1016/j.immuni.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  50. Spel L, Boelens JJ, Nierkens S, Boes M (2013) Antitumor immune responses mediated by dendritic cells: how signals derived from dying cancer cells drive antigen cross-presentation. Oncoimmunology 2:e26403. doi:10.4161/onci.26403

    Article  PubMed  PubMed Central  Google Scholar 

  51. Workenhe ST, Mossman KL (2013) Rewiring cancer cell death to enhance oncolytic viro-immunotherapy. Oncoimmunology 2:e27138. doi:10.4161/onci.27138

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang H, Fueyo J (2014) Healing after death: antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology 3:e947872. doi:10.4161/21624011.2014.947872

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR)—Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); the Swiss Bridge Foundation, ISREC and the Paris Alliance of Cancer Research Institutes (PACRI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Galluzzi or Guido Kroemer.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

L. Galluzzi and G. Kroemer share senior co-authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Bravo-San Pedro, J.M., Kepp, O. et al. Regulated cell death and adaptive stress responses. Cell. Mol. Life Sci. 73, 2405–2410 (2016). https://doi.org/10.1007/s00018-016-2209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2209-y

Keywords

Navigation