Skip to main content

Advertisement

Log in

Advancing Treatment in Bullous Pemphigoid: A Comprehensive Review of Novel Therapeutic Targets and Approaches

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Bullous pemphigoid is one of the most common autoimmune bullous diseases occurring primarily in the elderly. Pathogenic autoantibodies against BP180 and BP230 at the dermal–epidermal junction cause subepidermal blisters, erosions, and intense pruritus, all of which adversely affect the patients’ quality of life and may increase their morbidity and mortality. Current systemic treatment options for bullous pemphigoid are limited to corticosteroids and immunosuppressants, which can have substantial side effects on these vulnerable patients that even exceed their therapeutic benefits. Therefore, more precisely, targeting therapies to the pathogenic cells and molecules in bullous pemphigoid is an urgent issue. In this review, we describe the pathophysiology of bullous pemphigoid, focusing on autoantibodies, complements, eosinophils, neutrophils, proteases, and the T helper 2 and 17 axes since they are crucial in promoting proinflammatory environments. We also highlight the emerging therapeutic targets for bullous pemphigoid and their latest discoveries in clinical trials or experimental studies. Further well-designed studies are required to establish the efficacy and safety of these prospective therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used in the current review were obtained from the original articles cited in the references and publicly available information from ClinicalTrials.gov. The datasets used and/or analyzed during the current review are available from the corresponding author (Chun-Bing Chen).

References

  1. Baigrie D, Nookala V (2022) Bullous pemphigoid. StatPearls. Treasure Island (FL)

  2. Schmidt E, Della Torre R, Borradori L (2012) Clinical features and practical diagnosis of bullous pemphigoid. Immunol Allergy Clin 32(2):217–232

    Google Scholar 

  3. Endo M, Watanabe Y, Yamamoto M, Igari S, Kikuchi N, Yamamoto T (2021) Erythrodermic bullous pemphigoid. Dermatol Sin 39(1):61–62. https://doi.org/10.4103/ds.ds_45_20

    Article  Google Scholar 

  4. Bernard P, Antonicelli F (2017) Bullous pemphigoid: a review of its diagnosis, associations and treatment. Am J Clin Dermatol 18(4):513–528. https://doi.org/10.1007/s40257-017-0264-2

    Article  PubMed  Google Scholar 

  5. Ren Z, Hsu DY, Brieva J, Silverberg NB, Langan SM, Silverberg JI (2017) Hospitalization, inpatient burden and comorbidities associated with bullous pemphigoid in the U.S.A. Br J Dermatol 176(1):87–99.https://doi.org/10.1111/bjd.14821

  6. Chen Y, Wu C, Lin M, Chen T, Liao K, Chen Y et al (2011) Comorbidity profiles among patients with bullous pemphigoid: a nationwide population-based study. Br J Dermatol 165(3):593–599

    Article  CAS  PubMed  Google Scholar 

  7. Langan SM, Groves RW, West J (2011) The relationship between neurological disease and bullous pemphigoid: a population-based case–control study. J Invest Dermatol 131(3):631–636

    Article  CAS  PubMed  Google Scholar 

  8. Zeng FA, Wilson A, Sheriff T, Murrell DF (2022) Side effects of steroid-sparing agents in patients with bullous pemphigoid and pemphigus: a systematic review. JAAD international 9:33–43

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cole C, Borradori L, Amber KT (2022) Deciphering the contribution of BP230 autoantibodies in bullous pemphigoid. Antibodies 11(3):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Charneux J, Lorin J, Vitry F, Antonicelli F, Reguiai Z, Barbe C et al (2011) Usefulness of BP230 and BP180-NC16a enzyme-linked immunosorbent assays in the initial diagnosis of bullous pemphigoid: a retrospective study of 138 patients. Arch Dermatol 147(3):286–291

    Article  PubMed  Google Scholar 

  11. Thoma-Uszynski S, Uter W, Schwietzke S, Hofmann SC, Hunziker T, Bernard P et al (2004) BP230-and BP180-specific auto-antibodies in bullous pemphigoid. J Invest Dermatol 122(6):1413–1422

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida M, Hamada T, Amagai M, Hashimoto K, Uehara R, Yamaguchi K et al (2006) Enzyme-linked immunosorbent assay using bacterial recombinant proteins of human BP230 as a diagnostic tool for bullous pemphigoid. J Dermatol Sci 41(1):21–30

    Article  CAS  PubMed  Google Scholar 

  13. Delgado JC, Turbay D, Yunis EJ, Yunis JJ, Morton ED, Bhol K et al (1996) A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc Natl Acad Sci 93(16):8569–8571

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Schiavo AL, Ruocco E, Brancaccio G, Caccavale S, Ruocco V, Wolf R (2013) Bullous pemphigoid: etiology, pathogenesis, and inducing factors: facts and controversies. Clin Dermatol 31(4):391–399

    Article  PubMed  Google Scholar 

  15. Arakawa M, Dainichi T, Ishii N, Hamada T, Karashima T, Nakama T et al (2011) Lesional Th17 cells and regulatory T cells in bullous pemphigoid. Exp Dermatol 20(12):1022–1024

    Article  CAS  PubMed  Google Scholar 

  16. Moro F, Fania L, Sinagra JLM, Salemme A, Di Zenzo G (2020) Bullous pemphigoid: trigger and predisposing factors. Biomolecules 10(10):1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin J-D, Hung S-J (2021) Radiation-induced bullous pemphigoid in a patient with Kaposi’s sarcoma. Dermatol Sin 39(3):159–160. https://doi.org/10.4103/ds.ds_23_21

    Article  Google Scholar 

  18. Chao Y-C, Liu K-L (2022) New-onset bullous pemphigoid triggered by AstraZeneca COVID-19 vaccine. Dermatol Sin 40(4):245–246. https://doi.org/10.4103/1027-8117.358000

    Article  Google Scholar 

  19. Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV (2019) New insights into the pathogenesis of bullous pemphigoid: 2019 update. Front Immunol 10:1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiroyasu S, Turner CT, Richardson KC, Granville DJ (2019) Proteases in pemphigoid diseases Front Immunol 10:1454. https://doi.org/10.3389/fimmu.2019.01454

    Article  CAS  PubMed  Google Scholar 

  21. Ellebrecht CT, Maseda D, Payne AS (2022) Pemphigus and pemphigoid: from disease mechanisms to druggable pathways. J Invest Dermatol 142(3 Pt B):907–914.https://doi.org/10.1016/j.jid.2021.04.040

  22. Cole C, Vinay K, Borradori L, Amber KT (2022) Insights into the pathogenesis of bullous pemphigoid: the role of complement-independent mechanisms. Front Immunol 13:912876. https://doi.org/10.3389/fimmu.2022.912876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Messingham KA, Noe MH, Chapman MA, Giudice GJ, Fairley JA (2009) A novel ELISA reveals high frequencies of BP180-specific IgE production in bullous pemphigoid. J Immunol Methods 346(1–2):18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishiura N, Fujimoto M, Watanabe R, Nakashima H, Kuwano Y, Yazawa N et al (2008) Serum levels of IgE anti-BP180 and anti-BP230 autoantibodies in patients with bullous pemphigoid. J Dermatol Sci 49(2):153–161

    Article  CAS  PubMed  Google Scholar 

  25. Mihai S, Chiriac MT, Herrero-González JE, Goodall M, Jefferis R, Savage CO et al (2007) IgG4 autoantibodies induce dermal–epidermal separation. J Cell Mol Med 11(5):1117–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernard P, Reguiai Z, Tancrede-Bohin E, Cordel N, Plantin P, Pauwels C et al (2009) Risk factors for relapse in patients with bullous pemphigoid in clinical remission: a multicenter, prospective, cohort study. Arch Dermatol 145(5):537–542. https://doi.org/10.1001/archdermatol.2009.53

    Article  PubMed  Google Scholar 

  27. Kalowska M, Ciepiela O, Kowalewski C, Demkow U, Schwartz RA, Wozniak K (2016) Enzyme-linked immunoassay index for anti-NC16a IgG and IgE auto-antibodies correlates with severity and activity of bullous pemphigoid. Acta Derm Venereol 96(2):191–196. https://doi.org/10.2340/00015555-2101

    Article  CAS  PubMed  Google Scholar 

  28. Zhou XP, Liu B, Xu Q, Yang Y, He CX, Zuo YG et al (2016) Serum levels of immunoglobulins G1 and G4 targeting the non-collagenous 16A domain of BP180 reflect bullous pemphigoid activity and predict bad prognosis. J Dermatol 43(2):141–148. https://doi.org/10.1111/1346-8138.13051

    Article  CAS  PubMed  Google Scholar 

  29. Asbrink E, Hovmark A (1984) Serum IgE levels in patients with bullous pemphigoid and its correlation to the activity of the disease and anti-basement membrane zone antibodies. Acta Derm Venereol 64(3):243–246

    Article  CAS  PubMed  Google Scholar 

  30. D’auria L, Pietravalle M, Mastroianni A, Ferraro C, Mussi A, Bonifati C et al (1998) IL-5 levels in the serum and blister fluid of patients with bullous pemphigoid: correlations with eosinophil cationic protein, RANTES, IgE and disease severity. Arch Dermatol Res 290(1–2):25–27

    Article  PubMed  Google Scholar 

  31. Ma L, Wang M, Wang X, Chen X, Zhu X (2015) Circulating IgE anti-BP180 autoantibody and its correlation to clinical and laboratorial aspects in bullous pemphigoid patients. J Dermatol Sci 78(1):76–77

    Article  CAS  PubMed  Google Scholar 

  32. Hiroyasu S, Barit JJG, Hiroyasu A, Tsuruta D (2022) Pruritogens in pemphigoid diseases: possible therapeutic targets for a burdensome symptom. J Dermatol. https://doi.org/10.1111/1346-8138.16652

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Beek N, Luttmann N, Huebner F, Recke A, Karl I, Schulze FS et al (2017) Correlation of serum levels of IgE autoantibodies against BP180 with bullous pemphigoid disease activity. JAMA Dermatol 153(1):30–38. https://doi.org/10.1001/jamadermatol.2016.3357

    Article  PubMed  Google Scholar 

  34. Chiorean RM, Baican A, Mustafa MB, Lischka A, Leucuta DC, Feldrihan V et al (2018) Complement-activating capacity of autoantibodies correlates with disease activity in bullous pemphigoid patients. Front Immunol 9:2687. https://doi.org/10.3389/fimmu.2018.02687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Giudice GJ, Swartz SJ, Fairley JA, Till GO, Troy JL et al (1995) The role of complement in experimental bullous pemphigoid. J Clin Invest 95(4):1539–1544. https://doi.org/10.1172/JCI117826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Q, Ujiie H, Shibaki A, Wang G, Moriuchi R, Qiao HJ et al (2010) Human IgG1 monoclonal antibody against human collagen 17 noncollagenous 16A domain induces blisters via complement activation in experimental bullous pemphigoid model. J Immunol 185(12):7746–7755. https://doi.org/10.4049/jimmunol.1000667

    Article  CAS  PubMed  Google Scholar 

  37. Karsten CM, Beckmann T, Holtsche MM, Tillmann J, Tofern S, Schulze FS et al (2018) Tissue destruction in bullous pemphigoid can be complement independent and may be mitigated by C5aR2. Front Immunol 9:488

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kushner CJ, Payne AS (2018) Increasing the complement of therapeutic options in bullous pemphigoid. J Invest Dermatol 138(2):246–248

    Article  PubMed  Google Scholar 

  39. Nunn M, Fettiplace J (2021) 25178 Disease remission during a short-term treatment phase II study of nomacopan in mild-to-moderate bullous pemphigoid. J Am Acad Dermatol 85(3):AB54

  40. Kridin K (2018) Peripheral eosinophilia in bullous pemphigoid: prevalence and influence on the clinical manifestation. Br J Dermatol 179(5):1141–1147. https://doi.org/10.1111/bjd.16679

    Article  CAS  PubMed  Google Scholar 

  41. Amber KT, Valdebran M, Kridin K, Grando SA (2018) The role of eosinophils in bullous pemphigoid: a developing model of eosinophil pathogenicity in mucocutaneous disease. Front Med (Lausanne) 5:201. https://doi.org/10.3389/fmed.2018.00201

    Article  PubMed  Google Scholar 

  42. Messingham KN, Wang JW, Holahan HM, Srikantha R, Aust SC, Fairley JA (2016) Eosinophil localization to the basement membrane zone is autoantibody-and complement-dependent in a human cryosection model of bullous pemphigoid. Exp Dermatol 25(1):50–55

    Article  CAS  PubMed  Google Scholar 

  43. Lin L, Hwang B-J, Culton DA, Li N, Burette S, Koller BH et al (2018) Eosinophils mediate tissue injury in the autoimmune skin disease bullous pemphigoid. J Invest Dermatol 138(5):1032–1043

    Article  CAS  PubMed  Google Scholar 

  44. Simon D, Hoesli S, Roth N, Staedler S, Yousefi S, Simon HU (2011) Eosinophil extracellular DNA traps in skin diseases. J Allergy Clin Immunol 127(1):194–199. https://doi.org/10.1016/j.jaci.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  45. Marzano AV, Tedeschi A, Fanoni D, Bonanni E, Venegoni L, Berti E et al (2009) Activation of blood coagulation in bullous pemphigoid: role of eosinophils, and local and systemic implications. Br J Dermatol 160(2):266–272. https://doi.org/10.1111/j.1365-2133.2008.08880.x

    Article  CAS  PubMed  Google Scholar 

  46. Zebrowska A, Wagrowska-Danilewicz M, Danilewicz M, Wieczfinska J, Pniewska E, Zebrowski M et al (2015) Tissue factor in dermatitis herpetiformis and bullous pemphigoid: link between immune and coagulation system in subepidermal autoimmune bullous diseases. Mediators Inflamm 2015:870428. https://doi.org/10.1155/2015/870428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rudrich U, Gehring M, Papakonstantinou E, Illerhaus A, Engmann J, Kapp A et al (2018) Eosinophils are a Major Source of Interleukin-31 in Bullous Pemphigoid. Acta Derm Venereol 98(8):766–771. https://doi.org/10.2340/00015555-2951

    Article  CAS  PubMed  Google Scholar 

  48. Giusti D, Gatouillat G, Le Jan S, Plee J, Bernard P, Antonicelli F et al (2017) Eosinophil Cationic Protein (ECP), a predictive marker of bullous pemphigoid severity and outcome. Sci Rep 7(1):4833. https://doi.org/10.1038/s41598-017-04687-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Wang S, Lu M, Zhao Z, Peng X, Li L, Cheng C et al (2021) Plasma levels of D-dimer and fibrin degradation products correlate with bullous pemphigoid severity: a cross-sectional study. Sci Rep 11(1):17746. https://doi.org/10.1038/s41598-021-97202-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Fang H, Shao S, Xue K, Yuan X, Qiao P, Zhang J et al (2021) Neutrophil extracellular traps contribute to immune dysregulation in bullous pemphigoid via inducing B-cell differentiation and antibody production. FASEB J 35(7):e21746. https://doi.org/10.1096/fj.202100145R

    Article  CAS  PubMed  Google Scholar 

  51. Debol SM, Herron MJ, Nelson RD (1997) Anti-inflammatory action of dapsone: inhibition of neutrophil adherence is associated with inhibition of chemoattractant-induced signal transduction. J Leukoc Biol 62(6):827–836. https://doi.org/10.1002/jlb.62.6.827

    Article  CAS  PubMed  Google Scholar 

  52. Majeski JA, Alexander JW (1977) Evaluation of tetracycline in the neutrophil chemotactic response. J Lab Clin Med 90(2):259–265

    CAS  PubMed  Google Scholar 

  53. Berk MA, Lorincz AL (1986) The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report Arch Dermatol 122(6):670–674

    Article  CAS  PubMed  Google Scholar 

  54. Khalid SN, Khan ZA, Ali MH, Almas T, Khedro T, Nagarajan VR (2021) A blistering new era for bullous pemphigoid: a scoping review of current therapies, ongoing clinical trials, and future directions. Annals of Medicine and Surgery 70:102799

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tabatabaei-Panah P-S, Moravvej H, Alirajab M, Etaaty A, Geranmayeh M, Hosseine F et al (2022) Association between TH2 cytokine gene polymorphisms and risk of bullous pemphigoid. Immunol Invest 51(2):343–356

    Article  CAS  PubMed  Google Scholar 

  56. Kowalski EH, Kneibner D, Kridin K, Amber KT (2019) Serum and blister fluid levels of cytokines and chemokines in pemphigus and bullous pemphigoid. Autoimmun Rev 18(5):526–534

    Article  CAS  PubMed  Google Scholar 

  57. Abdelilah SG, Wellemans V, Agouli M, Guenounou M, Hamid Q, Beck LA et al (2006) Increased expression of Th2-associated chemokines in bullous pemphigoid disease. Role of eosinophils in the production and release of these chemokines. Clin Immunol 120(2):220–231

  58. Feliciani C, Toto P, Pour SM, Coscione G, Amerio P, Amerio P (1999) A Th2-like cytokine response is involved in bullous pemphigoid. the role of IL-4 and IL-5 in the pathogenesis of the disease. Int J Immunopathol Pharmacol 12(2):205873929901200202

  59. Giomi B, Caproni M, Calzolari A, Bianchi B, Fabbri P (2002) Th1, Th2 and Th3 cytokines in the pathogenesis of bullous pemphigoid. J Dermatol Sci 30(2):116–128

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Mao X, Liu Y, Yang Y, Jin H, Li L (2022) IL-13 genetic susceptibility to bullous pemphigoid: a potential target for treatment and a prognostic marker. Front Immunol 13:51

    Google Scholar 

  61. Toosi S, Bystryn JC (2010) Potential role of interleukin-17 in the pathogenesis of bullous pemphigoid. Med Hypotheses 74(4):727–728. https://doi.org/10.1016/j.mehy.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  62. Plee J, Le Jan S, Giustiniani J, Barbe C, Joly P, Bedane C et al (2015) Integrating longitudinal serum IL-17 and IL-23 follow-up, along with autoantibodies variation, contributes to predict bullous pemphigoid outcome. Sci Rep 5:18001. https://doi.org/10.1038/srep18001

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Chakievska L, Holtsche MM, Künstner A, Goletz S, Petersen B-S, Thaci D et al (2019) IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 96:104–112

    Article  CAS  PubMed  Google Scholar 

  64. Riani M, Le Jan S, Plée J, Durlach A, Le Naour R, Haegeman G et al (2017) Bullous pemphigoid outcome is associated with CXCL10-induced matrix metalloproteinase 9 secretion from monocytes and neutrophils but not lymphocytes. J Allergy Clin Immunol 139(3):863–872. e3

  65. Giusti D, Bini E, Terryn C, Didier K, Le Jan S, Gatouillat G et al (2019) NET formation in bullous pemphigoid patients with relapse is modulated by IL-17 and IL-23 interplay. Front Immunol 10:701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Jan S, Muller C, Plee J, Durlach A, Bernard P, Antonicelli F (2019) IL-23/IL-17 axis activates IL-1beta-associated inflammasome in macrophages and generates an auto-inflammatory response in a subgroup of patients with bullous pemphigoid. Front Immunol 10:1972.https://doi.org/10.3389/fimmu.2019.01972

  67. Vazquez-Tello A, Halwani R, Hamid Q, Al-Muhsen S (2013) Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells. J Clin Immunol 33(2):466–478. https://doi.org/10.1007/s10875-012-9828-3

    Article  CAS  PubMed  Google Scholar 

  68. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5(14):1317–1327

    Article  CAS  PubMed  Google Scholar 

  69. Galis ZS, Sukhova GK, Kranzhöfer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci 92(2):402–406

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Ståhle-Bäckdahl M, Inoue M, Guidice G, Parks W (1994) 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J Clin Investig 93(5):2022–2030

    Article  PubMed  PubMed Central  Google Scholar 

  71. Slack MA, Gordon SM (2019) Protease activity in vascular disease. Arterioscler Thromb Vasc Biol 39(10):e210–e218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. STOCKLEY RA (1999) Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med 160(supplement_1):S49-S52

  73. Vergnolle N (2016) Protease inhibition as new therapeutic strategy for GI diseases. Gut 65(7):1215–1224

    Article  CAS  PubMed  Google Scholar 

  74. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62(4):726–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR (2005) Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz) 53(6):505–517

    CAS  PubMed  Google Scholar 

  76. Wilgus TA, Roy S, McDaniel JC (2013) Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care (New Rochelle) 2(7):379–388. https://doi.org/10.1089/wound.2012.0383

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oikarinen AI, Zone JJ, Ahmed AR, Kiistala U, Uitto J (1983) Demonstration of collagenase and elastase activities in the blister fluids from bullous skin diseases. Comparison between dermatitis herpetiformis and bullous pemphigoid. J Invest Dermatol 81(3):261–6.https://doi.org/10.1111/1523-1747.ep12518285

  78. Lin L, Betsuyaku T, Heimbach L, Li N, Rubenstein D, Shapiro SD et al (2012) Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid. Matrix Biol 31(1):38–44. https://doi.org/10.1016/j.matbio.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  79. Van den Bergh F, Eliason SL, Burmeister BT, Giudice GJ (2012) Collagen XVII (BP180) modulates keratinocyte expression of the proinflammatory chemokine, IL-8. Exp Dermatol 21(8):605–611. https://doi.org/10.1111/j.1600-0625.2012.01529.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nissinen L, Kahari VM (2014) Matrix metalloproteinases in inflammation. Biochim Biophys Acta 1840(8):2571–2580. https://doi.org/10.1016/j.bbagen.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  81. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573. https://doi.org/10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  82. Verraes S, Hornebeck W, Polette M, Borradori L, Bernard P (2001) Respective contribution of neutrophil elastase and matrix metalloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid. J Invest Dermatol 117(5):1091–1096. https://doi.org/10.1046/j.0022-202x.2001.01521.x

    Article  CAS  PubMed  Google Scholar 

  83. Liu Z, Zhou X, Shapiro SD, Shipley JM, Twining SS, Diaz LA et al (2000) The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102(5):647–655

    Article  CAS  PubMed  Google Scholar 

  84. Qiao P, Dang E, Cao T, Fang H, Zhang J, Qiao H et al (2017) Dysregulation of mCD46 and sCD46 contribute to the pathogenesis of bullous pemphigoid. Sci Rep 7(1):145. https://doi.org/10.1038/s41598-017-00235-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Niimi Y, Pawankar R, Kawana S (2006) Increased expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and matrix metalloproteinase-13 in lesional skin of bullous pemphigoid. Int Arch Allergy Immunol 139(2):104–113

    Article  CAS  PubMed  Google Scholar 

  86. Airola K, Reunala T, Salo S, Saarialho-Kere UK (1997) Urokinase plasminogen activator is expressed by basal keratinocytes before interstitial collagenase, stromelysin-1, and laminin-5 in experimentally induced dermatitis herpetiformis lesions. J Invest Dermatol 108(1):7–11

    Article  CAS  PubMed  Google Scholar 

  87. Masson D, Nabholz M, Estrade C, Tschopp J (1986) Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J 5(7):1595–1600. https://doi.org/10.1002/j.1460-2075.1986.tb04401.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Russo V, Klein T, Lim DJ, Solis N, Machado Y, Hiroyasu S et al (2018) Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Sci Rep 8(1):1–11

    Article  Google Scholar 

  89. Afonina IS, Tynan GA, Logue SE, Cullen SP, Bots M, Lüthi AU et al (2011) Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol Cell 44(2):265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perl M, Denk S, Kalbitz M, Huber-Lang M (2012) Granzyme B: a new crossroad of complement and apoptosis. Current Topics in Innate Immunity II:135–146

    Google Scholar 

  91. Hiroyasu S, Zeglinski MR, Zhao H, Pawluk MA, Turner CT, Kasprick A et al (2021) Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 12(1):1–14

    Article  Google Scholar 

  92. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289. https://doi.org/10.1016/j.mam.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zebrowska A, Wagrowska-Danilewicz M, Danilewicz M, Wodz K, Sokolowska M, Erkiert-Polguj A et al (2009) Expression of selected ADAMs in bullous pemphigoid and dermatitis herpetiformis. J Dermatol Sci 56(1):58–61

    Article  CAS  PubMed  Google Scholar 

  94. Liu Y, Peng L, Li L, Liu C, Hu X, Xiao S et al (2017) TWEAK/Fn14 activation contributes to the pathogenesis of bullous pemphigoid. J Invest Dermatol 137(7):1512–1522

    Article  CAS  PubMed  Google Scholar 

  95. Shen S, Ke Y, Dang E, Fang H, Chang Y, Zhang J et al (2018) Semaphorin 4D from CD15+ granulocytes via ADAM10-induced cleavage contributes to antibody production in bullous pemphigoid. J Invest Dermatol 138(3):588–597

    Article  CAS  PubMed  Google Scholar 

  96. Winkles JA (2008) The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discovery 7(5):411–425

    Article  CAS  PubMed  Google Scholar 

  97. Liu Z-C, Zhou Q-L, Li X-Z, Yang J-H, Ao X, Zuo X-X (2011) Elevation of human tumor necrosis factor-like weak inducer of apoptosis in peripheral blood mononuclear cells is correlated with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Cytokine 53(3):295–300

    Article  CAS  PubMed  Google Scholar 

  98. Wajant H (2013) The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 170(4):748–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77:521–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Howell MD, Kuo FI, Smith PA (2019) Targeting the Janus kinase family in autoimmune skin diseases. Front Immunol 10:2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klein B, Treudler R, Simon JC. JAK‐inhibitors in dermatology–small molecules, big impact? Overview of the mechanism of action, previous study results and potential adverse effects. JDDG: J  der Deutschen Dermatologischen Gesellschaft 20(1):19–24

  102. Juczynska K, Wozniacka A, Waszczykowska E, Danilewicz M, Wagrowska-Danilewicz M, Wieczfinska J et al (2017) Expression of the JAK/STAT signaling pathway in bullous pemphigoid and dermatitis herpetiformis. Mediators Inflamm 2017:6716419. https://doi.org/10.1155/2017/6716419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferreira S, Guttman-Yassky E, Torres T (2020) Selective JAK1 inhibitors for the treatment of atopic dermatitis: focus on upadacitinib and abrocitinib. Am J Clin Dermatol 21(6):783–798

    Article  PubMed  Google Scholar 

  104. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I et al (2016) Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Investig 126(6):2064–2076

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ashino S, Takeda K, Li H, Taylor V, Joetham A, Pine PR et al (2014) Janus kinase 1/3 signaling pathways are key initiators of TH2 differentiation and lung allergic responses. J Allergy Clin Immunol 133(4):1162–1174. e4

  106. He X, Xu C (2020) Immune checkpoint signaling and cancer immunotherapy. Cell Res 30(8):660–669

    Article  PubMed  PubMed Central  Google Scholar 

  107. Heymann WR (2022) Immune checkpoint inhibitor-induced bullous pemphigoid quandaries. J Am Acad Dermatol 87(6):1285–1286

    Article  CAS  PubMed  Google Scholar 

  108. Asdourian MS, Shah N, Jacoby TV, Reynolds KL, Chen ST. Association of bullous pemphigoid with immune checkpoint inhibitor therapy in patients with cancer: a systematic review. JAMA dermatology

  109. Ernst N, Friedrich M, Bieber K, Kasperkiewicz M, Gross N, Sadik C et al (2021) Expression of PD-1 and Tim-3 is increased in skin of patients with bullous pemphigoid and pemphigus vulgaris. J Eur Acad Dermatol Venereol 35(2):486–492

    Article  CAS  PubMed  Google Scholar 

  110. Paluch C, Santos AM, Anzilotti C, Cornall RJ, Davis SJ (2018) Immune checkpoints as therapeutic targets in autoimmunity. Front Immunol 9:2306

    Article  PubMed  PubMed Central  Google Scholar 

  111. Borradori L, Van Beek N, Feliciani C, Tedbirt B, Antiga E, Bergman R et al (2022) Updated S2 K guidelines for the management of bullous pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 36(10):1689–1704

    Article  CAS  PubMed  Google Scholar 

  112. Freire PC, Muñoz CH, Derhaschnig U, Schoergenhofer C, Firbas C, Parry GC et al (2019) Specific inhibition of the classical complement pathway prevents C3 deposition along the dermal-epidermal junction in bullous pemphigoid. J Invest Dermatol 139(12):2417–2424. e2

  113. Sadik CD, Rashid H, Hammers CM, Diercks GF, Weidinger A, Beissert S et al (2022) Evaluation of nomacopan for treatment of bullous pemphigoid: a phase 2a nonrandomized controlled trial. JAMA Dermatol 158(6):641–649

    Article  PubMed  PubMed Central  Google Scholar 

  114. Simon D, Yousefi S, Cazzaniga S, Bürgler C, Radonjic SI, Houriet C et al (2020) Mepolizumab failed to affect bullous pemphigoid: a randomized, placebo-controlled, double-blind phase 2 pilot study. Allergy 75(3):669–672

    Article  PubMed  Google Scholar 

  115. Baum STZ,  Baniel A, Sprecher E, Czernik A (2018) A pilot phase 2a study of the safety and efficacy of bertilimumab, an anti-eotaxin-1 antibody, in bullous pemphigoid. in: Editor (Ed.)^(Eds.). Book A Pilot Phase 2a Study of the Safety and Efficacy of Bertilimumab, an Anti-Eotaxin-1 Antibody, in Bullous Pemphigoid. Orlando, Florida

  116. Amber KT, Maglie R, Solimani F, Eming R, Hertl M (2018) Targeted therapies for autoimmune bullous diseases: current status. Drugs 78(15):1527–1548

    Article  PubMed  Google Scholar 

  117. Mok CC (2013) Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Devel Ther 8:87–100. https://doi.org/10.2147/DDDT.S41645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Minard-Colin V, Auperin A, Pillon M, Burke GAA, Barkauskas DA, Wheatley K et al (2020) Rituximab for High-Risk, Mature B-cell non-Hodgkin’s lymphoma in children. N Engl J Med 382(23):2207–2219. https://doi.org/10.1056/NEJMoa1915315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Joly P, Maho-Vaillant M, Prost-Squarcioni C, Hebert V, Houivet E, Calbo S et al (2017) First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. The Lancet 389(10083):2031–2040

    Article  CAS  Google Scholar 

  120. Garrido PM, Queiro SC, Travassos AR, Borges-Costa J, Filipe P (2022) Emerging treatments for bullous pemphigoid. J Dermatolog Treat 33(2):649–661.https://doi.org/10.1080/09546634.2020.1782325

  121. Cho Y, Chu C, Wang L (2015) First-line combination therapy with rituximab and corticosteroids provides a high complete remission rate in moderate-to-severe bullous pemphigoid. Br J Dermatol 173(1):302–304

    Article  CAS  PubMed  Google Scholar 

  122. Polansky M, Eisenstadt R, DeGrazia T, Zhao X, Liu Y, Feldman R (2019) Rituximab therapy in patients with bullous pemphigoid: a retrospective study of 20 patients. J Am Acad Dermatol 81(1):179–186

    Article  CAS  PubMed  Google Scholar 

  123. Tovanabutra N, Payne AS (2020) Clinical outcome and safety of rituximab therapy for pemphigoid diseases. J Am Acad Dermatol 82(5):1237–1239

    Article  CAS  PubMed  Google Scholar 

  124. Lamberts A, Euverman HI, Terra JB, Jonkman MF, Horváth B (2018) Effectiveness and safety of rituximab in recalcitrant pemphigoid diseases. Front Immunol 9:248

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ronaghy A, Streilein RD, Hall RP (2014) Rituximab decreases without preference all subclasses of IgG anti-BP180 autoantibodies in refractory bullous pemphigoid (BP). J Dermatol Sci 74(1):93–94

    Article  CAS  PubMed  Google Scholar 

  126. Ahmed AR, Shetty S, Kaveri S, Spigelman ZS (2016) Treatment of recalcitrant bullous pemphigoid (BP) with a novel protocol: A retrospective study with a 6-year follow-up. J Am Acad Dermatol 74(4):700–708. e3

  127. Chee R, Nagendran V, Bansal A, Casie Chetty S, Harland C (2007) B-cell targeted therapy alone may not be effective in bullous pemphigoid. Clin Exp Dermatol 32(1):111–112

    CAS  PubMed  Google Scholar 

  128. Berkani N, Joly P, Golinski M-L, Colliou N, Lim A, Larbi A et al (2019) B-cell depletion induces a shift in self antigen specific B-cell repertoire and cytokine pattern in patients with bullous pemphigoid. Sci Rep 9(1):3525

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  129. Schmidt E, Seitz C, Benoit S, Bröcker E, Goebeler M (2007) Rituximab in autoimmune bullous diseases: mixed responses and adverse effects. Br J Dermatol 156(2):352–356

    Article  CAS  PubMed  Google Scholar 

  130. Russell Hall I, MD (2013) Rituximab in the Treatment of patients with bullous pemphigoid. in: Editor (Ed.)^(Eds.). Book Rituximab in the Treatment of Patients With Bullous Pemphigoid. ClinicalTrials.gov

  131. Kalled SL (2005) The role of BAFF in immune function and implications for autoimmunity. Immunol Rev 204(1):43–54

    Article  CAS  PubMed  Google Scholar 

  132. Dubey AK, Handu SS, Dubey S, Sharma P, Sharma K (2011) Belimumab: first targeted biological treatment for systemic lupus erythematosus. J Pharmacol Pharmacother 2(4):317–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Petricca L, Gigante MR, Paglionico A, Costanzi S, Vischini G, Di Mario C et al (2020) Rituximab followed by belimumab controls severe lupus nephritis and bullous pemphigoid in systemic lupus erythematosus refractory to several combination therapies. Front Med 7:553075

    Article  Google Scholar 

  134. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C (2005) The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 115(3):459–465

    Article  CAS  PubMed  Google Scholar 

  135. Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA et al (2004) Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol 113(2):297–302. https://doi.org/10.1016/j.jaci.2003.11.044

    Article  CAS  PubMed  Google Scholar 

  136. Fairley JA, Baum CL, Brandt DS, Messingham KA (2009) Pathogenicity of IgE in autoimmunity: successful treatment of bullous pemphigoid with omalizumab. J Allergy Clin Immunol 123(3):704–705. https://doi.org/10.1016/j.jaci.2008.11.035

    Article  PubMed  PubMed Central  Google Scholar 

  137. Deza G, Ricketti PA, Giménez-Arnau AM, Casale TB (2018) Emerging biomarkers and therapeutic pipelines for chronic spontaneous urticaria. The Journal of Allergy and Clinical Immunology: In Practice 6(4):1108–1117

  138. Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J et al (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60(3):309–316

    Article  CAS  PubMed  Google Scholar 

  139. Gönül M, Keseroglu HO, Ergin C, Özcan I, Erdem Ö (2016) Bullous pemphigoid successfully treated with omalizumab. Indian J Dermatol Venereol Leprol 82:577

    Article  PubMed  Google Scholar 

  140. Kenneth KY, Crew AB, Messingham KA, Fairley JA, Woodley DT (2014) Omalizumab therapy for bullous pemphigoid. J Am Acad Dermatol 71(3):468–474

    Article  Google Scholar 

  141. Vassallo C, Somenzi A, De Amici M, Barruscotti S, Brazzelli V (2022) Omalizumab as a corticosteroid‐sparing agent in the treatment of bullous pemphigoid. Dermatol Ther e15946

  142. Seyed Jafari SM, Gadaldi K, Feldmeyer L, Yawalkar N, Borradori L, Schlapbach C (2019) Effects of omalizumab on FcεRI and IgE expression in lesional skin of bullous pemphigoid. Front Immunol 10:1919

    Article  PubMed  PubMed Central  Google Scholar 

  143. Uysal PI, Yalcin B, Oktem A (2017) Our clinical experience with the use of omalizumab in the treatment of bullous pemphigoid. Turkderm Turk Arch Drematol Venereol 51:124–128

    Google Scholar 

  144. Cao P, Xu W, Zhang L (2022) Rituximab, omalizumab, and dupilumab treatment outcomes in bullous pemphigoid: a systematic review. Front Immunol 13:928621

  145. Gasser P, Tarchevskaya SS, Guntern P, Brigger D, Ruppli R, Zbaren N et al (2020) The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun 11(1):165. https://doi.org/10.1038/s41467-019-13815-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  146. Goebl NA, Babbey CM, Datta-Mannan A, Witcher DR, Wroblewski VJ, Dunn KW (2008) Neonatal Fc receptor mediates internalization of Fc in transfected human endothelial cells. Mol Biol Cell 19(12):5490–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zakrzewicz A, Würth C, Beckert B, Feldhoff S, Vanderheyden K, Foss S et al (2022) Stabilization of keratinocyte monolayer integrity in the presence of anti-desmoglein-3 antibodies through FcRn blockade with efgartigimod: novel treatment paradigm for pemphigus? Cells 11(6):942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Howard JF Jr, Bril V, Vu T, Karam C, Peric S, Margania T et al (2021) Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. The Lancet Neurology 20(7):526–536

    Article  CAS  PubMed  Google Scholar 

  149. Broome CM, McDonald V, Miyakawa Y, Carpenedo M, Kuter DJ, Al-Samkari H et al (2022) Efficacy and safety of intravenous efgartigimod in adults with primary immune thrombocytopenia: results of a phase 3, multicenter, double-blinded, placebo-controlled, randomized clinical trial (ADVANCE IV). Blood 140(Supplement 1):6–8. https://doi.org/10.1182/blood-2022-167838

    Article  Google Scholar 

  150. Guptill J, Antozzi C, Bril V, Gamez J, Meuth SG, Blanco JLM et al (2021) Vivacity-MG: a phase 2, multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of nipocalimab administered to adults with generalized myasthenia gravis (2157). in: Editor (Ed.)^(Eds.). Book Vivacity-MG: a phase 2, multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of nipocalimab administered to adults with generalized myasthenia gravis (2157). AAN Enterprises

  151. Gál P, Ambrus G, Závodszky P (2002) C1s, the protease messenger of C1. Immunobiology 205(4–5):383–394

    Article  PubMed  Google Scholar 

  152. Kasprick A, Holtsche MM, Rose EL, Hussain S, Schmidt E, Petersen F et al (2018) The anti-C1s antibody TNT003 prevents complement activation in the skin induced by bullous pemphigoid autoantibodies. J Invest Dermatol 138(2):458–461. https://doi.org/10.1016/j.jid.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  153. Heimbach L, Li Z, Berkowitz P, Zhao M, Li N, Rubenstein DS et al (2011) The C5a receptor on mast cells is critical for the autoimmune skin-blistering disease bullous pemphigoid. J Biol Chem 286(17):15003–15009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guo R-F, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    Article  CAS  PubMed  Google Scholar 

  155. Maurer M, Khan DA, Komi DEA, Kaplan AP (2021) Biologics for the use in chronic spontaneous urticaria: when and which. The Journal of Allergy and Clinical Immunology: In Practice 9(3):1067–1078

  156. Carvelli J, Meziani F, Dellamonica J, Cordier P-Y, Allardet-Servent J, Fraisse M et al (2022) Avdoralimab (anti-C5aR1 mAb) versus placebo in patients with severe COVID-19: results from a randomized controlled trial (FOR COVID Elimination [FORCE]). Crit Care Med 50(12):1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wagner F, Lange C, Nowak M, Ignatenko S (2014) FRI0315 first human dose of the anti-C5a receptor-targeting, human monoclonal antibody NNC0215-0384 in patients with rheumatoid arthritis: a phase 1, randomised, double-blind, single-dose, dose-escalation trial. Ann Rheum Dis 73(Suppl 2):499–499

    Article  Google Scholar 

  158. Hepburn NJ, Williams AS, Nunn MA, Chamberlain-Banoub JC, Hamer J, Morgan BP et al (2007) In vivo characterization and therapeutic efficacy of a C5-specific inhibitor from the soft tick Ornithodoros moubata. J Biol Chem 282(11):8292–8299

    Article  CAS  PubMed  Google Scholar 

  159. Jore MM, Johnson S, Sheppard D, Barber NM, Li YI, Nunn MA et al (2016) Structural basis for therapeutic inhibition of complement C5. Nat Struct Mol Biol 23(5):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sezin T, Murthy S, Attah C, Seutter M, Holtsche MM, Hammers CM et al (2019) Dual inhibition of complement factor 5 and leukotriene B4 synergistically suppresses murine pemphigoid disease. JCI insight 4(15)

  161. Sezin T, Krajewski M, Wutkowski A, Mousavi S, Chakievska L, Bieber K et al (2017) The leukotriene B4 and its receptor BLT1 act as critical drivers of neutrophil recruitment in murine bullous pemphigoid-like epidermolysis bullosa acquisita. J Invest Dermatol 137(5):1104–1113

    Article  CAS  PubMed  Google Scholar 

  162. Akari Therapeutics receives FDA Fast track designation for nomacopan for the treatment of bullous pemphigoid. in: Editor (Ed.)^(Eds.). Book Akari Therapeutics receives FDA fast track designation for nomacopan for the treatment of bullous pemphigoid. Akari Therapeutics. 2021. pp

  163. Yamamoto H, Fara AF, Dasgupta P, Kemper C (2013) CD46: the ‘multitasker’of complement proteins. Int J Biochem Cell Biol 45(12):2808–2820

    Article  CAS  PubMed  Google Scholar 

  164. Qiao P, Luo Y-X, Zhi D-L, Wang G, Dang E-L (2021) Blockade of complement activation in bullous pemphigoid by using recombinant CD55-CD46 fusion protein. Chin Med J 134(07):864–866

    Article  CAS  PubMed  Google Scholar 

  165. Greenfeder S, Umland SP, Cuss FM, Chapman RW, Egan RW (2001) Th2 cytokines and asthma the role of interleukin-5 in allergic eosinophilic disease. Respir Res 2(2):1–9

    Article  Google Scholar 

  166. D’Auria L, Pietravalle M, Mastroianni A, Ferraro C, Mussi A, Bonifati C et al (1998) IL-5 levels in the serum and blister fluid of patients with bullous pemphigoid: correlations with eosinophil cationic protein, RANTES, IgE and disease severity. Arch Dermatol Res 290(1–2):25–27. https://doi.org/10.1007/s004030050272

    Article  CAS  PubMed  Google Scholar 

  167. Hom S, Pisano M (2017) Reslizumab (Cinqair): an interleukin-5 antagonist for severe asthma of the eosinophilic phenotype. Pharmacy and Therapeutics 42(9):564

    PubMed  PubMed Central  Google Scholar 

  168. Rhyou H-I, Han S-H, Nam Y-H (2021) Successful induction treatment of bullous pemphigoid using reslizumab: a case report. Allergy Asthma Clin Immunol 17(1):1–4

    Article  Google Scholar 

  169. Ghazi A, Trikha A, Calhoun WJ (2012) Benralizumab–a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity–a novel approach for the treatment of asthma. Expert Opin Biol Ther 12(1):113–118

    Article  CAS  PubMed  Google Scholar 

  170. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM et al (2010) MEDI-563, a humanized anti–IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125(6):1344–1353. e2

  171. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M et al (2016) Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. The Lancet 388(10056):2128–2141

    Article  CAS  Google Scholar 

  172. Kagami S, Kai H, Kakinuma T, Miyagaki T, Kamata M, Sugaya M (2012) High levels of CCL26 in blister fluid and sera of patients with bullous pemphigoid. J Invest Dermatol 132(1):249–251

    Article  CAS  PubMed  Google Scholar 

  173. Bertilimumab granted fast track designation for the treatment of bullous pemphigoid. in: Editor (Ed.)^(Eds.). Book Bertilimumab granted fast track designation for the treatment of bullous pemphigoid. GlobeNewswire, Inc. Clinical Leader. 2018. pp

  174. Egami S, Yamagami J, Amagai M (2020) Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 145(4):1031–1047

    Article  CAS  PubMed  Google Scholar 

  175. Samanta A, Aziz AA, Jhingan M, Singh SR, Khanani A, Chhablani J (2020) Emerging therapies in neovascular age-related macular degeneration in 2020. Asia-Pacific journal of ophthalmology (Philadelphia, Pa) 9(3):250

    Article  PubMed  Google Scholar 

  176. Norling LV, Perretti M, Cooper D (2009) Endogenous galectins and the control of the host inflammatory response. J Endocrinol 201(2):169–184

    Article  CAS  PubMed  Google Scholar 

  177. Katoh S, Nobumoto A, Matsumoto N, Matsumoto K, Ehara N, Niki T et al (2010) Involvement of galectin-9 in lung eosinophilia in patients with eosinophilic pneumonia. Int Arch Allergy Immunol 153(3):294–302

    Article  CAS  PubMed  Google Scholar 

  178. Chihara M, Kurita M, Yoshihara Y, Asahina A, Yanaba K (2018) Clinical significance of serum galectin-9 and soluble CD155 levels in patients with systemic sclerosis. J Immunol Res 2018

  179. Nakajima R, Miyagaki T, Oka T, Nakao M, Kawaguchi M, Suga H et al (2015) Elevated serum galectin-9 levels in patients with atopic dermatitis. J Dermatol 42(7):723–726

    Article  CAS  PubMed  Google Scholar 

  180. Wiersma VR, Clarke A, Pouwels SD, Perry E, Abdullah TM, Kelly C et al (2019) Galectin-9 is a possible promoter of immunopathology in rheumatoid arthritis by activation of peptidyl arginine deiminase 4 (PAD-4) in granulocytes. Int J Mol Sci 20(16):4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yang R, Sun L, Li C-F, Wang Y-H, Yao J, Li H et al (2021) Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 12(1):832

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  182. Pruessmann J, Pruessmann W, Holtsche MM, Linnemann B, Hammers CM, van Beek N et al (2021) Immunomodulator galectin-9 is increased in blood and skin of patients with bullous pemphigoid. Acta Derm Venereol 101(3):adv00419-adv00419

  183. Barker J, Jones M, Mitra R, Crockett-Torabe E, Fantone J, Kunkel SL et al (1991) Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol 139(4):869

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Messingham KN, Srikantha R, DeGueme AM, Fairley JA (2011) FcR-independent effects of IgE and IgG autoantibodies in bullous pemphigoid. J Immunol 187(1):553–560

    Article  CAS  PubMed  Google Scholar 

  185. Inaoki M, Takehara K (1998) Increased serum levels of interleukin (IL)-5, IL-6 and IL-8 in bullous pemphigoid. J Dermatol Sci 16(2):152–157

    Article  CAS  PubMed  Google Scholar 

  186. Bertini R, Barcelos L, Beccari A, Cavalieri B, Moriconi A, Bizzarri C et al (2012) Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br J Pharmacol 165(2):436–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lopez-Castejon G, Brough D (2011) Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev 22(4):189–195. https://doi.org/10.1016/j.cytogfr.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13).https://doi.org/10.3390/ijms20133328

  189. Fang H, Shao S, Cao T, Lei J, Dang E, Zhang J et al (2016) Increased expression of NLRP3 inflammasome components and interleukin-18 in patients with bullous pemphigoid. J Dermatol Sci 83(2):116–123. https://doi.org/10.1016/j.jdermsci.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  190. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19(9):2560

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P et al (2013) Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. Plos One 8(7):e70496

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  192. Tukaj S, Gruner D, Zillikens D, Kasperkiewicz M (2014) Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes. Cell Stress Chaperones 19(6):887–894. https://doi.org/10.1007/s12192-014-0513-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nizami S, Arunasalam K, Green J, Cook J, Lawrence CB, Zarganes-Tzitzikas T et al (2021) Inhibition of the NLRP3 inflammasome by HSP90 inhibitors. Immunology 162(1):84–91

    Article  CAS  PubMed  Google Scholar 

  194. Tukaj S, Zillikens D, Kasperkiewicz M (2015) Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 24(8):567–571

    Article  CAS  PubMed  Google Scholar 

  195. Tukaj S, Sitko K (2022) Heat shock protein 90 (Hsp90) and Hsp70 as potential therapeutic targets in autoimmune skin diseases. Biomolecules 12(8):1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Harb H, Chatila TA (2020) Mechanisms of dupilumab. Clin Exp Allergy 50(1):5–14

    Article  CAS  PubMed  Google Scholar 

  197. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ et al (2016) Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 375(24):2335–2348

    Article  CAS  PubMed  Google Scholar 

  198. Kaye A, Gordon SC, Deverapalli SC, Her MJ, Rosmarin D (2018) Dupilumab for the treatment of recalcitrant bullous pemphigoid. JAMA Dermatol 154(10):1225–1226

    Article  PubMed  Google Scholar 

  199. Abdat R, Waldman RA, de Bedout V, Czernik A, Mcleod M, King B et al (2020) Dupilumab as a novel therapy for bullous pemphigoid: a multicenter case series. J Am Acad Dermatol 83(1):46–52

    Article  CAS  PubMed  Google Scholar 

  200. Zhang Y, Zhang J, Chen J, Xu Q, Zou Y, Chao J (2021) Efficacy and safety of dupilumab in moderate-to-severe bullous pemphigoid. Front Immunol 4144

  201. Seyed Jafari SM, Feldmeyer L, Bossart S, Simon D, Schlapbach C, Borradori L (2021) Case report: combination of omalizumab and dupilumab for recalcitrant bullous pemphigoid. Front Immunol 11:611549

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lai P-T, Tseng H-C (2022) Refractory bullous pemphigoid with prurigo nodularis successfully treated with dupilumab monotherapy. Dermatol Sin 40(4):237–238. https://doi.org/10.4103/1027-8117.357999

    Article  Google Scholar 

  203. Shipman WD, Singh K, Cohen JM, Leventhal J, Damsky W, Tomayko MM (2023) Immune checkpoint inhibitor-induced bullous pemphigoid is characterized by interleukin (IL)-4 and IL-13 expression and responds to dupilumab treatment. Br J Dermatol 189(3):339–341

    Article  PubMed  Google Scholar 

  204. Zhang L, Chen Z, Wang L, Luo X (2023) Bullous pemphigoid: the role of type 2 inflammation in its pathogenesis and the prospect of targeted therapy. Front Immunol 14:1115083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu Y-J (2006) Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203(2):269–273

    Article  PubMed  PubMed Central  Google Scholar 

  206. Friend SL, Hosier S, Nelson A, Foxworthe D, Williams D, Farr A (1994) A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol 22(3):321–328

    CAS  PubMed  Google Scholar 

  207. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155(2):285–295. https://doi.org/10.1016/j.cell.2013.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li S-Z, Jin X-X, Ge X-L, Zuo Y-G, Jin H-Z (2020) Thymic stromal lymphopoietin is implicated in the pathogenesis of bullous pemphigoid by dendritic cells. J Immunol Res 2020

  209. Zhang Y, Hwang B-J, Liu Z, Li N, Lough K, Williams SE et al (2018) BP180 dysfunction triggers spontaneous skin inflammation in mice. Proc Natl Acad Sci 115(25):6434–6439

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  210. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME et al (2021) Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 384(19):1800–1809

    Article  CAS  PubMed  Google Scholar 

  211. Simpson EL, Parnes JR, She D, Crouch S, Rees W, Mo M et al (2019) Tezepelumab, an anti–thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol 80(4):1013–1021

    Article  CAS  PubMed  Google Scholar 

  212. Prieto-Peña D, Dasgupta B (2020) Biologic agents and small-molecule inhibitors in systemic autoimmune conditions: an update. Pol Arch Intern Med 131:171–181

    PubMed  Google Scholar 

  213. Mangold A (2019) Ixekizumab in the treatment of bullous pemphigoid. in: Editor (Ed.)^(Eds.). Book Ixekizumab in the treatment of bullous pemphigoid. ClinicalTrials.gov

  214. Lu L, Yu Y, Zhang J, Fan X, Qi Y, Lin B (2022) Incidental amelioration of bullous pemphigoid during ixekizumab treatment for psoriasis. J Dermatol 49(1):e13–e15. https://doi.org/10.1111/1346-8138.16189

    Article  CAS  PubMed  Google Scholar 

  215. Xiao Y, Gu Y, Xia D, Zhou X, Li W (2022) Ixekizumab successfully treated refractory psoriasis concurrent bullous pemphigoid. J Dermatol. https://doi.org/10.1111/1346-8138.16559

    Article  PubMed  PubMed Central  Google Scholar 

  216. Holtsche MM, Hammers CM, Chakievska L, Ludwig RJ, Thaci D, Zillikens D et al (2020) Adjuvant treatment with secukinumab induced long term remission in a patient with severe bullous pemphigoid. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 18(12):1478–1480

  217. Kamata M, Asano Y, Shida R, Maeda N, Yoshizaki A, Miyagaki T et al (2019) Secukinumab decreased circulating anti-BP 180-NC 16a autoantibodies in a patient with coexisting psoriasis vulgaris and bullous pemphigoid. J Dermatol 46(6):e216–e217

    Article  PubMed  Google Scholar 

  218. Yun JS, Scardamaglia L, Tan CG, McCormack CJ (2022) Successful secukinumab treatment of active bullous pemphigoid and chronic severe psoriasis: a case report. Australas J Dermatol

  219. Maronese CA, Cassano N, Genovese G, Foti C, Vena GA, Marzano AV (2022) The intriguing links between psoriasis and bullous pemphigoid. J Clin Med 12(1):328

    Article  PubMed  PubMed Central  Google Scholar 

  220. Schurich A, Raine C, Morris V, Ciurtin C (2018) The role of IL-12/23 in T cell–related chronic inflammation: implications of immunodeficiency and therapeutic blockade. Rheumatology 57(2):246–254

    Article  CAS  PubMed  Google Scholar 

  221. Majima Y, Yagi H, Tateishi C, Groth S, Schmidt E, Zillikens D et al (2013) A successful treatment with ustekinumab in a case of antilaminin-γ1 pemphigoid associated with psoriasis. Br J Dermatol 168(6):1367–1369

    Article  CAS  PubMed  Google Scholar 

  222. Loget F, Plée P, Antonicelli F, Bernard P, Loget J, Plée J (2017) A successful treatment with ustekinumab in a case of relapsing bullous pemphigoid associated with psoriasis. J Eur Acad Dermatol Venereol 31(5):e228–e230

    Article  CAS  PubMed  Google Scholar 

  223. Querol‐Cisneros E, Moreno‐Artero E, Rodríguez‐Garijo N, Tomás‐Velázquez A, Querol I, Ishii N et al (2021) Bullous pemphigoid without detection of autoantibodies in a patient with psoriasis under ustekinumab. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 19(2):265–267

  224. Le Guern A, Alkeraye S, Vermersch-Langlin A, Coupe P, Vonarx M (2015) Bullous pemphigoid during ustekinumab therapy. JAAD Case Reports 1(6):359–360

    Article  PubMed  PubMed Central  Google Scholar 

  225. Onsun N, Sallahoglu K, Dizman D, Su Ö, Tosuner Z (2017) Bullous pemphigoid during ustekinumab therapy in a psoriatic patient. Eur J Dermatol 27(1):81–82

    Article  PubMed  Google Scholar 

  226. Marin M, Alzueta N, Castresana M, Gascón A, Pío M (2021) Bullous pemphigoid induced by ustekinumab: a case report. Eur J Hosp Pharm 28(1):47–49

    Article  PubMed  Google Scholar 

  227. Markham A (2018) Tildrakizumab: first global approval. Drugs 78:845–849

    Article  CAS  PubMed  Google Scholar 

  228. Kerkemeyer KL, Pinczewski J, Sinclair R (2020) Successful treatment of recalcitrant lichen planus pemphigoides with tildrakizumab. Australas J Dermatol 61(3):e366–e368. https://doi.org/10.1111/ajd.13263

    Article  PubMed  Google Scholar 

  229. Cheng E, Armstrong CL, Galisteo R, Winkles JA (2013) TWEAK/Fn14 axis-targeted therapeutics: moving basic science discoveries to the clinic. Front Immunol 4:473. https://doi.org/10.3389/fimmu.2013.00473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wisniacki N, Amaravadi L, Galluppi GR, Zheng TS, Zhang R, Kong J et al (2013) Safety, tolerability, pharmacokinetics, and pharmacodynamics of anti-TWEAK monoclonal antibody in patients with rheumatoid arthritis. Clin Ther 35(8):1137–1149

    Article  CAS  PubMed  Google Scholar 

  231. Liu Z, Shapiro SD, Zhou X, Twining SS, Senior RM, Giudice GJ et al (2000) A critical role for neutrophil elastase in experimental bullous pemphigoid. J Clin Invest 105(1):113–123. https://doi.org/10.1172/JCI3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Yu X, Akbarzadeh R, Pieper M, Scholzen T, Gehrig S, Schultz C et al (2018) Neutrophil adhesion is a prerequisite for antibody-mediated proteolytic tissue damage in experimental models of epidermolysis bullosa acquisita. J Invest Dermatol 138(9):1990–1998

    Article  CAS  PubMed  Google Scholar 

  233. Ogut D, Reel B, Korkmaz CG, Arun MZ, Micili SC, Ergur BU (2016) Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells. Folia Histochem Cytobiol 54(4):171–180

    Article  CAS  PubMed  Google Scholar 

  234. Stechmiller J, Cowan L, Schultz G (2010) The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds. Biol Res Nurs 11(4):336–344

    Article  CAS  PubMed  Google Scholar 

  235. Jung J-J, Razavian M, Kim H-Y, Ye Y, Golestani R, Toczek J et al (2016) Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice. Sci Rep 6(1):32659

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  236. Williams HC, Wojnarowska F, Kirtschig G, Mason J, Godec TR, Schmidt E et al (2017) Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial. The Lancet 389(10079):1630–1638

    Article  CAS  Google Scholar 

  237. Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discovery 13(12):904–927

    Article  CAS  PubMed  Google Scholar 

  238. Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 34(4):233–242

    Article  CAS  PubMed  Google Scholar 

  239. Shi Y, Ma X, Fang G, Tian X, Ge C (2021) Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: recent progress and current challenges. NanoImpact 21:100293

    Article  CAS  PubMed  Google Scholar 

  240. Werny L, Grogro A, Bickenbach K, Bülck C, Armbrust F, Koudelka T et al (2023) MT1-MMP and ADAM10/17 exhibit a remarkable overlap of shedding properties. FEBS J 290(1):93–111

    Article  CAS  PubMed  Google Scholar 

  241. Dreymueller D, Ludwig A (2017) Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 28(4):354–361

    Article  CAS  PubMed  Google Scholar 

  242. Kataoka H (2009) EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments. J Dermatol Sci 56(3):148–153

    Article  CAS  PubMed  Google Scholar 

  243. Malemud CJ (2019) Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 165:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sarny S, Hucke M, El-Shabrawi Y (2018) Treatment of mucous membrane pemphigoid with Janus kinase inhibitor baricitinib. JAMA ophthalmology 136(12):1420–1422

    Article  PubMed  Google Scholar 

  245. James H, Paley GL, Brasington R, Custer PL, Margolis TP, Paley MA (2021) Tofacitinib for refractory ocular mucous membrane pemphigoid. Am J Ophthalmol Case Rep 22:101104

  246. Xiao Y, Xiang H, Li W (2022) Concurrent bullous pemphigoid and plaque psoriasis successfully treated with Janus kinase inhibitor baricitinib. Dermatol Ther 35(10):e15754

    Article  CAS  PubMed  Google Scholar 

  247. MacFarlane L-A, R Murphy P (2010) MicroRNA: biogenesis, function and role in cancer. Current genomics 11(7):537–561

  248. Chen J-Q, Papp G, Szodoray P, Zeher M (2016) The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 15(12):1171–1180

    Article  CAS  PubMed  Google Scholar 

  249. Zhang L, Wu H, Zhao M, Chang C, Lu Q (2020) Clinical significance of miRNAs in autoimmunity. J Autoimmun 109:102438. https://doi.org/10.1016/j.jaut.2020.102438

    Article  CAS  PubMed  Google Scholar 

  250. GÖKŞİN ŞS, URGANCI BE, İMREN IG, AÇIKBAŞ İ (2022) Comparison of serum and lesional miRNA-1291 expressions in patients with bullous pemphigoid. Pamukkale Med J 15(4):22–22

  251. Qiu L, Zhang L, Qi R, Gao X, Chen H, Xiao T (2020) miR-1291 functions as a potential serum biomarker for bullous pemphigoid. Dis Markers 2020

  252. Papara C, Zillikens D, Sadik CD, Baican A (2021) MicroRNAs in pemphigus and pemphigoid diseases. Autoimmun Rev 20(7):102852

    Article  CAS  PubMed  Google Scholar 

  253. Ho PT, Clark IM, Le LT (2022) MicroRNA-based diagnosis and therapy. Int J Mol Sci 23(13):7167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N (2019) CAR T cell therapy: a new era for cancer treatment. Oncol Rep 42(6):2183–2195

    CAS  PubMed  Google Scholar 

  255. Grigor EJ, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD et al (2019) Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: a systematic review and meta-analysis. Transfus Med Rev 33(2):98–110

    Article  PubMed  Google Scholar 

  256. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):1–11

    Article  MathSciNet  Google Scholar 

  257. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ et al (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353(6295):179–184

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  258. Lee J, Lundgren DK, Mao X, Manfredo-Vieira S, Nunez-Cruz S, Williams EF et al (2020) Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Investig 130(12):6317–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. David J. Chang SB, Gwendolyn K. Binder (2022) A phase 1 trial of DSG3-CAART cells in mucosal-dominant pemphigus vulgaris patients: preliminary data. in: Editor (Ed.)^(Eds.). Book A Phase 1 trial of DSG3-CAART cells in mucosal-dominant pemphigus vulgaris patients: preliminary data. Milan

  260. Bieber K, Kridin K, Emtenani S, Boch K, Schmidt E, Ludwig RJ (2021) Milestones in personalized medicine in pemphigus and pemphigoid. Front Immunol 11:591971

    Article  PubMed  PubMed Central  Google Scholar 

  261. Bieber K, Ludwig RJ (2020) Drug development in pemphigoid diseases. Acta Derm Venereol 100(5):108–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Figures 1 and 2 were created with BioRender.com.

Funding

This work was supported by grants from the National Science and Technology Council, Taiwan (NSTC 109–2320-B-182A-008-MY3, 110–2320-B-182A-014-MY3, 111–2326-B-182A-003-, 111–2314-B-182A-113-MY3, 112-2326-B-182A-003-MY3), and Chang Gung Memorial Hospital (CORPG3L0471, CORPG3L0472, CORPG3M0361, CMRPG3M2221).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H-CC, C-BC and W-HC; methodology and resources, H-CC, C-WW, W-HT, H-EL, and C-BC; writing—original draft preparation, H-CC and C-BC; writing—review and editing, H-CC, C-WW, W-HT, H-EL, W-HC, and C-BC; supervision, C-BC and W-HC; submission, H-CC and C-BC. All authors have read and agreed to the published version of the manuscript. Correspondence and reprint requests to C-BC.

Corresponding authors

Correspondence to Wen-Hung Chung or Chun-Bing Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC., Wang, CW., Toh, W.H. et al. Advancing Treatment in Bullous Pemphigoid: A Comprehensive Review of Novel Therapeutic Targets and Approaches. Clinic Rev Allerg Immunol 65, 331–353 (2023). https://doi.org/10.1007/s12016-023-08973-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-023-08973-1

Keywords

Navigation