Skip to main content
Log in

Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The CRISPR system, as an effective genome editing technology, has been extensively utilized for the construction of disease models in human pluripotent stem cells. Establishment of a gene mutant or knockout stem cell line typically relies on Cas nuclease-generated double-stranded DNA breaks and exogenous templates, which can produce uncontrollable editing byproducts and toxicity. The recently developed adenine base editors (ABE) have greatly facilitated related research by introducing A/T > G/C mutations in the coding regions or splitting sites (AG-GT) of genes, enabling mutant gene knock-in or knock-out without introducing DNA breaks. In this study, we edit the AG bases in exons anterior to achieve gene knockout via the ABE8e-SpRY, which recognizes most expanded protospacer adjacent motif to target the genome. Except for gene-knockout, ABE8e-SpRY can also efficiently establish disease-related A/T-to-G/C variation cell lines by targeting coding sequences. The method we generated is simple and time-saving, and it only takes two weeks to obtain the desired cell line. This protocol provides operating instructions step-by-step for constructing knockout and point mutation cell lines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code Availability

Not applicable.

Data Availability

Materials related to this paper is available from the corresponding author.

References

  1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  2. Preman, P., Tcw, J., Calafate, S., Snellinx, A., Alfonso-Triguero, M., Corthout, N., Munck, S., Thal, D., Goate, A., De Strooper, B., & Arranz, A. (2021). Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Molecular neurodegeneration, 16(1), 68. https://doi.org/10.1186/s13024-021-00487-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi, J. (2020). iPS cell-based therapy for Parkinson's disease: A Kyoto trial. Regenerative therapy, 13(18–22). https://doi.org/10.1016/j.reth.2020.06.002

  4. Chang, Y., Li, Y., Bai, R., Wu, F., Ma, S., Saleem, A., Zhang, S., Jiang, Y., Dong, T., Guo, T., Hang, C., Lu, W., Jiang, H., & Lan, F. (2021). hERG-deficient human embryonic stem cell-derived cardiomyocytes for modelling QT prolongation. Stem cell research & therapy, 12(1), 278. https://doi.org/10.1186/s13287-021-02346-1

    Article  CAS  Google Scholar 

  5. Jin, M., Xu, R., Wang, L., Alam, M., Ma, Z., Zhu, S., Martini, A., Jadali, A., Bernabucci, M., Xie, P., Kwan, K., Pang, Z., Head, E., Liu, Y., Hart, R., & Jiang, P. (2022). Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer’s disease. Cell Stem Cell, 29(7), 1135-1153.e1138. https://doi.org/10.1016/j.stem.2022.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, X., Lu, W., Li, Y., Wu, F., Bai, R., Ma, S., Dong, T., Zhang, H., Lee, A., Wang, Y., & Lan, F. (2019). MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling. Cell death & disease, 10(8), 610. https://doi.org/10.1038/s41419-019-1826-4

    Article  CAS  Google Scholar 

  7. Van der Kant, R., Langness, V., Herrera, C., Williams, D., Fong, L., Leestemaker, Y., Steenvoorden, E., Rynearson, K., Brouwers, J., Helms, J., Ovaa, H., Giera, M., Wagner, S., Bang, A., & Goldstein, L. (2019). Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer’s Disease Neurons. Cell Stem Cell, 24(3), 363-375.e369. https://doi.org/10.1016/j.stem.2018.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okano, H., Yasuda, D., Fujimori, K., Morimoto, S., & Takahashi, S. (2020). Ropinirole, a New ALS Drug Candidate Developed Using iPSCs. Trends in pharmacological sciences, 41(2), 99–109. https://doi.org/10.1016/j.tips.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Yahata, N., Asai, M., Kitaoka, S., Takahashi, K., Asaka, I., Hioki, H., Kaneko, T., Maruyama, K., Saido, T., Nakahata, T., Asada, T., Yamanaka, S., Iwata, N., & Inoue, H. (2011). Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS ONE, 6(9), e25788. https://doi.org/10.1371/journal.pone.0025788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ito, T., Kawai, Y., Yasui, Y., Iriguchi, S., Minagawa, A., Ishii, T., Miyoshi, H., Taketo, M., Kawada, K., Obama, K., Sakai, Y., & Kaneko, S. (2021). The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-1derived iPS cells. Communications biology, 4(1), 694. https://doi.org/10.1038/s42003-021-02195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueda, T., Kumagai, A., Iriguchi, S., Yasui, Y., Miyasaka, T., Nakagoshi, K., Nakane, K., Saito, K., Takahashi, M., Sasaki, A., Yoshida, S., Takasu, N., Seno, H., Uemura, Y., Tamada, K., Nakatsura, T., & Kaneko, S. (2020). Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer science, 111(5), 1478–1490. https://doi.org/10.1111/cas.14374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grskovic, M., Javaherian, A., Strulovici, B., & Daley, G. (2011). Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nature reviews. Drug discovery, 10(12), 915–929. https://doi.org/10.1038/nrd3577

    Article  CAS  PubMed  Google Scholar 

  13. Krawczyk, E.& Kitlińska, J. (2023). Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers 15(13). https://doi.org/10.3390/cancers15133314

  14. Zhou, T., Benda, C., Dunzinger, S., Huang, Y., Ho, J., Yang, J., Wang, Y., Zhang, Y., Zhuang, Q., Li, Y., Bao, X., Tse, H., Grillari, J., Grillari-Voglauer, R., Pei, D., & Esteban, M. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature protocols, 7(12), 2080–2089. https://doi.org/10.1038/nprot.2012.115

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, X. (2013). Cellular reprogramming of human peripheral blood cells. Genomics, proteomics & bioinformatics, 11(5), 264–274. https://doi.org/10.1016/j.gpb.2013.09.001

    Article  CAS  Google Scholar 

  16. Burridge, P., Matsa, E., Shukla, P., Lin, Z., Churko, J., Ebert, A., Lan, F., Diecke, S., Huber, B., Mordwinkin, N., Plews, J., Abilez, O., Cui, B., Gold, J., & Wu, J. (2014). Chemically defined generation of human cardiomyocytes. Nature methods, 11(8), 855–860. https://doi.org/10.1038/nmeth.2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang, Z., He, Y., Tang, H., Li, J., Cai, J., & Liao, Y. (2023). Dedifferentiated fat cells: Current applications and future directions in regenerative medicine. Stem cell research & therapy, 14(1), 207. https://doi.org/10.1186/s13287-023-03399-0

    Article  Google Scholar 

  18. Tani, S., Okada, H., Chung, U., Ohba, S.,& Hojo, H. (2021). The Progress of Stem Cell Technology for Skeletal Regeneration. International journal of molecular sciences, 22(3). https://doi.org/10.3390/ijms22031404

  19. Escribá, R., Larrañaga-Moreira, J., Richaud-Patin, Y., Pourchet, L., Lazis, I., Jiménez-Delgado, S., Morillas-García, A., Ortiz-Genga, M., Ochoa, J., Carreras, D., Pérez, G., de la Pompa, J., Brugada, R., Monserrat, L., Barriales-Villa, R., & Raya, A. (2023). iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy. Circulation research, 133(2), 108–119. https://doi.org/10.1161/circresaha.122.321951

    Article  PubMed  Google Scholar 

  20. Li, C., Chen, S., Zhou, Y., Zhao, Y., Liu, P.,& Cai, J. (2018). Application of induced pluripotent stem cell transplants: Autologous or allogeneic? Life sciences, 212(145–149). https://doi.org/10.1016/j.lfs.2018.09.057

  21. Hook, G., Reinheckel, T., Ni, J., Wu, Z., Kindy, M., Peters, C., & Hook, V. (2022). Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacological reviews, 74(3), 600–629. https://doi.org/10.1124/pharmrev.121.000527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vermersch, E., Jouve, C., & Hulot, J. (2020). CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular research, 116(5), 894–907. https://doi.org/10.1093/cvr/cvz250

    Article  CAS  PubMed  Google Scholar 

  23. Liu, N., & Olson, E. (2022). CRISPR Modeling and Correction of Cardiovascular Disease. Circulation research, 130(12), 1827–1850. https://doi.org/10.1161/circresaha.122.320496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boutin, J., Cappellen, D., Rosier, J., Amintas, S., Dabernat, S., Bedel, A., & Moreau-Gaudry, F. (2022). ON-Target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. The CRISPR journal, 5(1), 19–30. https://doi.org/10.1089/crispr.2021.0120

    Article  CAS  PubMed  Google Scholar 

  25. Ihry, R., Worringer, K., Salick, M., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., Randhawa, R., Kulkarni, T., Yang, Z., McAllister, G., Russ, C., Reece-Hoyes, J., Forrester, W., Hoffman, G., Dolmetsch, R., & Kaykas, A. (2018). p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature medicine, 24(7), 939–946. https://doi.org/10.1038/s41591-018-0050-6

    Article  CAS  PubMed  Google Scholar 

  26. Mali, P., Yang, L., Esvelt, K., Aach, J., Guell, M., DiCarlo, J., Norville, J., & Church, G. (2013). RNA-guided human genome engineering via Cas9. Science (New York, N.Y.), 339(6121), 823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  Google Scholar 

  27. Park, J., Park, M., Lee, S., Kim, D., Kim, K., Jang, H., & Cha, H. (2023). Gene editing with “pencil” rather than “scissors” in human pluripotent stem cells. Stem cell research & therapy, 14(1), 164. https://doi.org/10.1186/s13287-023-03394-5

    Article  CAS  Google Scholar 

  28. Komor, A., Kim, Y., Packer, M., Zuris, J., & Liu, D. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porto, E., Komor, A., Slaymaker, I., & Yeo, G. (2020). Base editing: Advances and therapeutic opportunities. Nature reviews. Drug discovery, 19(12), 839–859. https://doi.org/10.1038/s41573-020-0084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walton, R., Christie, K., Whittaker, M., & Kleinstiver, B. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science (New York, N.Y.), 368(6488), 290–296. https://doi.org/10.1126/science.aba8853

    Article  CAS  PubMed  Google Scholar 

  31. Vicencio, J., Sánchez-Bolaños, C., Moreno-Sánchez, I., Brena, D., Vejnar, C., Kukhtar, D., Ruiz-López, M., Cots-Ponjoan, M., Rubio, A., Melero, N., Crespo-Cuadrado, J., Carolis, C., Pérez-Pulido, A., Giráldez, A., Kleinstiver, B., Cerón, J., & Moreno-Mateos, M. (2022). Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature communications, 13(1), 2601. https://doi.org/10.1038/s41467-022-30228-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, J., Xu, R., Qin, R., Liu, X., Kong, F., & Wei, P. (2021). Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Molecular plant, 14(2), 352–360. https://doi.org/10.1016/j.molp.2020.12.017

    Article  CAS  PubMed  Google Scholar 

  33. Ren, Q., Sretenovic, S., Liu, S., Tang, X., Huang, L., He, Y., Liu, L., Guo, Y., Zhong, Z., Liu, G., Cheng, Y., Zheng, X., Pan, C., Yin, D., Zhang, Y., Li, W., Qi, L., Li, C., Qi, Y., & Zhang, Y. (2021). PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nature plants, 7(1), 25–33. https://doi.org/10.1038/s41477-020-00827-4

    Article  CAS  PubMed  Google Scholar 

  34. Xu, Z., Kuang, Y., Ren, B., Yan, D., Yan, F., Spetz, C., Sun, W., Wang, G., Zhou, X., & Zhou, H. (2021). SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome biology, 22(1), 6. https://doi.org/10.1186/s13059-020-02231-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, C., Wang, Y., Wang, F., Zhao, S., Song, J., Feng, F., Zhao, J., & Yang, J. (2021). Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants. Molecular plant, 14(2), 191–194. https://doi.org/10.1016/j.molp.2020.12.016

    Article  CAS  PubMed  Google Scholar 

  36. Asano, Y., Yamashita, K., Hasegawa, A., Ogasawara, T., Iriki, H., & Muramoto, T. (2021). Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Scientific reports, 11(1), 11163. https://doi.org/10.1038/s41598-021-89546-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans, B.& Bernstein, D. (2021). SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome. mSphere, 6(3), https://doi.org/10.1128/mSphere.00303-21

  38. Alves, C., Ha, L., Yaworski, R., Sutton, E., Lazzarotto, C., Christie, K., Reilly, A., Beauvais, A., Doll, R., de la Cruz, D., Maguire, C., Swoboda, K., Tsai, S., Kothary, R., & Kleinstiver, B. (2024). Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nature biomedical engineering, 8(2), 118–131. https://doi.org/10.1038/s41551-023-01132-z

    Article  CAS  PubMed  Google Scholar 

  39. Berget, S., Moore, C., & Sharp, P. (1977). Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of Sciences of the United States of America, 74(8), 3171–3175. https://doi.org/10.1073/pnas.74.8.3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharp, P. (2005). The discovery of split genes and RNA splicing. Trends in biochemical sciences, 30(6), 279–281. https://doi.org/10.1016/j.tibs.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Musunuru, K., Chadwick, A., Mizoguchi, T., Garcia, S., DeNizio, J., Reiss, C., Wang, K., Iyer, S., Dutta, C., Clendaniel, V., Amaonye, M., Beach, A., Berth, K., Biswas, S., Braun, M., Chen, H., Colace, T., Ganey, J., Gangopadhyay, S., … Kathiresan, S. (2021). In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature, 593(7859), 429–434. https://doi.org/10.1038/s41586-021-03534-y

    Article  CAS  PubMed  Google Scholar 

  42. Li, L., Cao, Y., Zhao, F., Mao, B., Ren, X., Wang, Y., Guan, Y., You, Y., Li, S., Yang, T.,& Zhao, X. (2019). Validation and Classification of Atypical Splicing Variants Associated With Osteogenesis Imperfecta. Frontiers in genetics, 10(979). https://doi.org/10.3389/fgene.2019.00979

  43. Liu, M., Cardilla, A., Ngeow, J., Gong, X.,& Xia, Y. (2022). Studying Kidney Diseases Using Organoid Models. Frontiers in cell and developmental biology, 10(845401). https://doi.org/10.3389/fcell.2022.845401

  44. Saleem, A., Abbas, M., Wang, Y., & Lan, F. (2022). hPSC gene editing for cardiac disease therapy. Pflugers Archiv : European journal of physiology, 474(11), 1123–1132. https://doi.org/10.1007/s00424-022-02751-2

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Z., Ma, X., & Zhu, S. (2020). Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells. Acta biochimica et biophysica Sinica, 52(7), 708–715. https://doi.org/10.1093/abbs/gmaa047

    Article  CAS  PubMed  Google Scholar 

  46. Qi, T., Wu, F., Xie, Y., Gao, S., Li, M., Pu, J., Li, D., Lan, F.,& Wang, Y. (2020). Base Editing Mediated Generation of Point Mutations Into Human Pluripotent Stem Cells for Modeling Disease. Frontiers in cell and developmental biology, 8(590581). https://doi.org/10.3389/fcell.2020.590581

  47. Xie, G., Lin, S., Wu, F.& Liu, J. (2023). Nanomaterial-based ophthalmic drug delivery. Advanced drug delivery reviews, 200(115004). https://doi.org/10.1016/j.addr.2023.115004

  48. Nandy, K., Babu, D., Rani, S., Joshi, G., Ijee, S., George, A., Palani, D., Premkumar, C., Rajesh, P., Vijayanand, S., David, E., Murugesan, M., & Velayudhan, S. (2023). Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Scientific reports, 13(1), 21953. https://doi.org/10.1038/s41598-023-42174-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, J., Zhu, H., Gan, J., Liang, G., Li, L.,& Zhao, Y. (2023). Engineered mRNA Delivery Systems for Biomedical Applications. Advanced materials (Deerfield Beach, Fla.), e2308029. https://doi.org/10.1002/adma.202308029

  50. Van der Wiel, I., Cheng, J., Koukiekolo, R., Lyn, R., Stevens, N., O’Connor, N., Turro, N., & Pezacki, J. (2009). FLEth RNA intercalating probe is a convenient reporter for small interfering RNAs. Journal of the American Chemical Society, 131(29), 9872–9873. https://doi.org/10.1021/ja902636m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We gratefully acknowledge funding support from the National Natural Science Foundation of China (82070258, 81970205), Shenzhen Fundamental Research Program (ZDSYS20200923172000001), China Postdoctoral Science Foundation (2022M720498).

Author information

Authors and Affiliations

Authors

Contributions

MSH and LF designed this study; CY and ZYS performed the majority of cell experiments and data analysis; CY and ZYS provided the manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongshuai Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors indicate no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Lan, F., Zhang, Y. et al. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10713-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10713-7

Keywords

Navigation