Skip to main content
Log in

Transcriptional Analysis of Histone Deacetylase Family Members Reveal Similarities Between Differentiating and Aging Spermatogonial Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The differentiation of adult stem cells involves extensive chromatin remodeling, mediated in part by the gene products of histone deacetylase (HDAC) family members. While the transcriptional downregulation of HDACs can impede stem cell self-renewal in certain contexts, it may also promote stem cell maintenance under other circumstances. In self-renewing, differentiating, and aging spermatogonial stem cells (SSCs), the gene expression dynamics of HDACs have not yet been characterized. To gain further insight with these studies, we analyzed the transcriptional profiles of six HDAC family members, previously identified to be the most highly expressed in self-renewing SSCs, during stem cell differentiation and aging. Here we discovered that in both differentiating and aging SSCs the expression of Sirt4 increases, while the expression of Hdac2, Hdac6, and Sirt1 decreases. When SSCs are exposed to the lifespan-enhancing drug rapamycin in vivo, the resultant HDAC gene expression patterns are opposite of those seen in the differentiating and aging SSCs, with increased Hdac2, Hdac6, and Sirt1 and decreased Hdac8, Hdac9, and Sirt4. Our findings suggest that HDACs important for stem cell maintenance and oxidative capacity are downregulated as adult stem cells differentiate or age. These results provide important insights into the epigenetic regulation of stem cell differentiation and aging in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McCool, K. W., Xu, X., Singer, D. B., Murdoch, F. E., & Fritsch, M. K. (2007). The role of histone acetylation in regulating early gene expression patterns during early embryonic stem cell differentiation. Journal of Biological Chemistry, 282, 6696–6706.

    Article  CAS  Google Scholar 

  2. Lee, S., Park, J. R., Seo, M. S., Roh, K. H., Park, S. B., Hwang, J. W., Sun, B., et al. (2009). Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Proliferation, 42, 711–720.

    Article  CAS  Google Scholar 

  3. Bug, G., Schwarz, K., Schoch, C., Kampfmann, M., Henschler, R., Hoelzer, D., Ottmann, O. G., et al. (2007). Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica, 92, 542–545.

    Article  CAS  Google Scholar 

  4. Yang, X. J., & Seto, E. (2008). The rpd3/hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 9, 206–218.

    Article  CAS  Google Scholar 

  5. Chalkiadaki, A., & Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Reviews Endocrinology.

  6. Montgomery, R. L., Hsieh, J., Barbosa, A. C., Richardson, J. A., & Olson, E. N. (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proceedings of the National Academy of Sciences of the United States of America, 106, 7876–7881.

    Article  CAS  Google Scholar 

  7. Ye, F., Chen, Y., Hoang, T., Montgomery, R. L., Zhao, X. H., Bu, H., Hu, T., et al. (2009). Hdac1 and hdac2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-tcf interaction. Nature Neuroscience, 12, 829–838.

    Article  CAS  Google Scholar 

  8. Spallotta, F., Rosati, J., Straino, S., Nanni, S., Grasselli, A., Ambrosino, V., Rotili, D., et al. (2010). Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class iia histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia. Stem Cells, 28, 431–442.

    Article  CAS  Google Scholar 

  9. Snyder, E. Y., & Loring, J. F. (2005). A role for stem cell biology in the physiological and pathological aspects of aging. Journal of the American Geriatrics Society, 53, S287–S291.

    Article  Google Scholar 

  10. Jung, J. W., Lee, S., Seo, M. S., Park, S. B., Kurtz, A., Kang, S. K., & Kang, K. S. (2010). Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cellular and Molecular Life Sciences, 67, 1165–1176.

    Article  CAS  Google Scholar 

  11. Lee, S., Jung, J. W., Park, S. B., Roh, K., Lee, S. Y., Kim, J. H., Kang, S. K., et al. (2011). Histone deacetylase regulates high mobility group a2-targeting micrornas in human cord blood-derived multipotent stem cell aging. Cellular and Molecular Life Sciences, 68, 325–336.

    Article  CAS  Google Scholar 

  12. Buageaw, A., Sukhwani, M., Ben-Yehudah, A., Ehmcke, J., Rawe, V. Y., Pholpramool, C., Orwig, K. E., et al. (2005). Gdnf family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biology of Reproduction, 73, 1011–1016.

    Article  CAS  Google Scholar 

  13. Gassei, K., Ehmcke, J., & Schlatt, S. (2009). Efficient enrichment of undifferentiated gfr alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting. Cell and Tissue Research, 337, 177–183.

    Article  CAS  Google Scholar 

  14. Kubota, H., Avarbock, M. R., & Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 6487–6492.

    Article  CAS  Google Scholar 

  15. Shima, J. E., McLean, D. J., McCarrey, J. R., & Griswold, M. D. (2004). The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biology of Reproduction, 71, 319–330.

    Article  CAS  Google Scholar 

  16. Sekeri-Pataryas, K. E., & Sourlingas, T. G. (2007). The differentiation-associated linker histone, h1.0, during the in vitro aging and senescence of human diploid fibroblasts. Annals of the New York Academy of Sciences, 1100, 361–367.

    Article  CAS  Google Scholar 

  17. Zhang, X., Ebata, K. T., Robaire, B., & Nagano, M. C. (2006). Aging of male germ line stem cells in mice. Biology of Reproduction, 74, 119–124.

    Article  CAS  Google Scholar 

  18. Ryu, B. Y., Orwig, K. E., Oatley, J. M., Avarbock, M. R., & Brinster, R. L. (2006). Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells, 24, 1505–1511.

    Article  CAS  Google Scholar 

  19. Kokkinaki, M., Lee, T. L., He, Z., Jiang, J., Golestaneh, N., Hofmann, M. C., Chan, W. Y., et al. (2010). Age affects gene expression in mouse spermatogonial stem/progenitor cells. Reproduction, 139, 1011–1020.

    Article  CAS  Google Scholar 

  20. Schmidt, J. A., Abramowitz, L. K., Kubota, H., Wu, X., Niu, Z., Avarbock, M. R., Tobias, J. W., et al. (2011). In vivo and in vitro aging is detrimental to mouse spermatogonial stem cell function. Biology of Reproduction, 84, 698–706.

    Article  CAS  Google Scholar 

  21. Hobbs, R. M., Seandel, M., Falciatori, I., Rafii, S., & Pandolfi, P. P. (2010). Plzf regulates germline progenitor self-renewal by opposing mtorc1. Cell, 142, 468–479.

    Article  CAS  Google Scholar 

  22. Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S. J., & Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in caenorhabditis elegans. Aging Cell, 6, 95–110.

    Article  CAS  Google Scholar 

  23. Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., & Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly drosophila melanogaster. Cell Metabolism, 11, 35–46.

    Article  CAS  Google Scholar 

  24. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460, 392–395.

    Article  CAS  Google Scholar 

  25. Feng, L. X., Ravindranath, N., & Dym, M. (2000). Stem cell factor/c-kit up-regulates cyclin d3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 s6 kinase pathway in spermatogonia. Journal of Biological Chemistry, 275, 25572–25576.

    Article  CAS  Google Scholar 

  26. Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., & Morrison, S. J. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441, 475–482.

    Article  CAS  Google Scholar 

  27. Castilho, R. M., Squarize, C. H., Chodosh, L. A., Williams, B. O., & Gutkind, J. S. (2009). Mtor mediates wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell, 5, 279–289.

    Article  CAS  Google Scholar 

  28. Kofman, A. E., McGraw, M. R., & Payne, C. J. (2012). Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging, 4, 279–289.

    Article  CAS  Google Scholar 

  29. Luzzani, C., Solari, C., Losino, N., Ariel, W., Romorini, L., Bluguermann, C., Sevlever, G., et al. (2011). Modulation of chromatin modifying factors’ gene expression in embryonic and induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 410, 816–822.

    Article  CAS  Google Scholar 

  30. Dovey, O. M., Foster, C. T., & Cowley, S. M. (2010). Histone deacetylase 1 (hdac1), but not hdac2, controls embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 107, 8242–8247.

    Article  CAS  Google Scholar 

  31. Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., et al. (2006). Sirt4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 126, 941–954.

    Article  CAS  Google Scholar 

  32. Yu, W., Fu, Y. C., Zhou, X. H., Chen, C. J., Wang, X., Lin, R. B., & Wang, W. (2009). Effects of resveratrol on h(2)o(2)-induced apoptosis and expression of sirts in h9c2 cells. Journal of Cellular Biochemistry, 107, 741–747.

    Article  CAS  Google Scholar 

  33. Qian, D. Z., Kachhap, S. K., Collis, S. J., Verheul, H. M., Carducci, M. A., Atadja, P., & Pili, R. (2006). Class ii histone deacetylases are associated with vhl-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research, 66, 8814–8821.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shannon Gallagher, Rachel Anderson, and Kristin Kalita for their assistance with these experiments, and the Medical Research Institute Council at Children’s Memorial Research Center for their generous financial support. C.J.P. is the recipient of an NIH Pathway-to-Independence Award from the Eunice Kennedy Shriver National Institute of Child Health & Human Development. This work was supported by an NIH grant to C.J.P. (5R00 HD055330-5).

Disclosures

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Payne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofman, A.E., Huszar, J.M. & Payne, C.J. Transcriptional Analysis of Histone Deacetylase Family Members Reveal Similarities Between Differentiating and Aging Spermatogonial Stem Cells. Stem Cell Rev and Rep 9, 59–64 (2013). https://doi.org/10.1007/s12015-012-9392-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9392-5

Keywords

Navigation