Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells

Abstract

Recent advances have highlighted extensive phenotypic and functional similarities between normal stem cells and cancer stem cells. This raises the question of whether disease therapies can be developed that eliminate cancer stem cells without eliminating normal stem cells. Here we address this issue by conditionally deleting the Pten tumour suppressor gene in adult haematopoietic cells. This led to myeloproliferative disease within days and transplantable leukaemias within weeks. Pten deletion also promoted haematopoietic stem cell (HSC) proliferation. However, this led to HSC depletion via a cell-autonomous mechanism, preventing these cells from stably reconstituting irradiated mice. In contrast to leukaemia-initiating cells, HSCs were therefore unable to maintain themselves without Pten. These effects were mostly mediated by mTOR as they were inhibited by rapamycin. Rapamycin not only depleted leukaemia-initiating cells but also restored normal HSC function. Mechanistic differences between normal stem cells and cancer stem cells can thus be targeted to deplete cancer stem cells without damaging normal stem cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pten deletion from adult haematopoietic cells leads to myeloproliferative disease that progresses to AML and ALL.
Figure 2: HSCs proliferate after Pten deletion, transiently expanding in number before becoming depleted.
Figure 3: Pten is required cell-autonomously for HSC maintenance.
Figure 4: AML- and ALL-initiating cells are rare in Pten -deleted mice, but are transplantable, are contained within multiple distinct populations, and are highly enriched among cells that express HSC markers.
Figure 5: Rapamycin depletes leukaemia-initiating cells.
Figure 6: Rapamycin rescues normal HSC function after Pten deletion.

References

  1. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003)

    Article  CAS  Google Scholar 

  3. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003)

    CAS  PubMed  Google Scholar 

  5. Lapidot, T. et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 17, 645–648 (1994)

    Article  ADS  Google Scholar 

  6. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Warner, J. K., Wang, J. C., Hope, K. J., Jin, L. & Dick, J. E. Concepts of human leukemic development. Oncogene 23, 7164–7177 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Park, I.-K. et al. Bmi-1 is required for the maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molofsky, A. V., Pardal, R. & Morrison, S. J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Molofsky, A. V. et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4aArf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Stiles, B., Groszer, M., Wang, S., Jiao, J. & Wu, H. PTENless means more. Dev. Biol. 273, 175–184 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Aggerholm, A., Gronbaek, K., Guldberg, P. & Hokland, P. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur. J. Haematol. 65, 109–113 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Roman-Gomez, J. et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104, 2492–2498 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Dahia, P. L. et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum. Mol. Genet. 8, 185–193 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Cheong, J. W. et al. Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br. J. Haematol. 122, 454–456 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 18, 2336–2341 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995)

    Article  ADS  PubMed  Google Scholar 

  24. Kogan, S. C. et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100, 238–245 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2005)

    Article  PubMed  Google Scholar 

  28. Smith, L. G., Weissman, I. L. & Heimfeld, S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl Acad. Sci. USA 88, 2788–2792 (1991)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10, 594–601 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Inoki, K., Corradetti, M. N. & Guan, K. L. Dysregulation of the TSC–mTOR pathway in human disease. Nature Genet. 37, 19–24 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Recher, C. et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105, 2527–2534 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Avellino, R. et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 106, 1400–1406 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Teachey, D. T. et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 107, 1149–1155 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994)

    Article  CAS  PubMed  Google Scholar 

  41. Smith, L. H. & Clayton, M. L. Distribution of injected 59Fe in mice. Exp. Hematol. 20, 82–86 (1970)

    Google Scholar 

  42. Mikkola, H. K. et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547–551 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute. O.H.Y. was supported by a predoctoral fellowship from the University of Michigan (UM) Institute of Gerontology. We thank the UM Flow-cytometry Core Facility, which was supported by the UM-Comprehensive Cancer Center. We also thank E. Smith in the Hybridoma Core Facility for antibody production, supported in part through the Rheumatic Disease Core Center; A. Burgess and N. McAnsh of the UM Comprehensive Cancer Center Tissue Core; and C. Mountford for excellent mouse colony management. Author Contributions O.H.Y. performed all experiments and participated in the design and interpretation of experiments. R.V. performed all pathology on the mice with help from O.H.Y. B.K.T. and D.O.F. performed spectral karyotype analysis with help from O.H.Y. W.G. and H.W. provided the Ptenfl/fl mice and discussed pre-publication results. S.J.M. participated in the design and interpretation of experiments, and wrote the paper with O.H.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Morrison.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Seven injections of pIpC over a 14 day period led to complete deletion of Pten in mature myeloid cells and in HSCs of adult Pten fl/fl Mx-1-Cre mice. (PDF 129 kb)

Supplementary Figure 2

The frequencies of HSCs and hematopoietic progenitors increases significantly in the spleen within days of Pten deletion. (PDF 277 kb)

Supplementary Figure 3

Myeloid leukemias acquired significant aneuploidy and/or chromosomal translocations after Pten deletion and were clonal or oligoclonal. (PDF 232 kb)

Supplementary Figure 4

No effect of Pten deletion on the rate of cell death observed within whole bone marrow or within the Flk2-Sca-1+Lin-c-kit+CD48- HSC population. (PDF 265 kb)

Supplementary Figure 5

Pten deletion did not affect the clonogenicity or differentiation of HSCs in culture. (PDF 92 kb)

Supplementary Figure 6

Rapamycin reduced the frequency of AML blasts cells that formed colonies in methylcellulose, the size of those colonies, and the percentage of cultured blast cells in S phase of the cell cycle. (PDF 179 kb)

Supplementary Methods

This file contains additional details of the methods used in this study. (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, Ö., Valdez, R., Theisen, B. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006). https://doi.org/10.1038/nature04703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing