Skip to main content
Log in

Recent Advances in the Formation, Stability, and Emerging Food Application of Water-in-Oil-in-Water Double Emulsion Carriers

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Double emulsion consists of two interfacial layers which can encapsulate both hydrophilic and lipophilic substances within a single carrier. Besides encapsulation, double emulsion has also been used to modify the sensorial properties of food products. However, at the same time, double emulsion is susceptible to destabilization under environmental stresses and long-term storage. In this paper, recent articles on double emulsion were critically highlighted in terms of production, composition, and stabilization. With current existing fundamental knowledge about double emulsion, this paper aims to review the utilization of double emulsion for food application to bring potential benefits, stability, and future application. The stability of double emulsion during production and storage was affected by the production method, composition, and temperature control. In terms of food application, double emulsion has been successfully applied in fat-reducing products, food encapsulation, fortification, preservation, edible food packaging, etc. The recent insights in forming stable storage of double emulsion with food-grade emulsifiers have also been discussed in this review paper. In the future, the efforts in mitigating the destabilization behaviour of double emulsion might be beneficial in boosting the applications of double emulsion in bigger markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data available within the article or its supplementary materials.

References

  • al nuumani, R., Vladisavljević, G. T., Kasprzak, M., & Wolf, B. (2020). In-vitro oral digestion of microfluidically produced monodispersed W/O/W food emulsions loaded with concentrated sucrose solution designed to enhance sweetness perception. Journal of Food Engineering, 267(109701), 1–8. https://doi.org/10.1016/j.jfoodeng.2019.109701

    Article  CAS  Google Scholar 

  • Balcaen, M., Steyls, J., Schoeppe, A., Nelis, V., & Van der Meeren, P. (2021). Phosphatidylcholine-depleted lecithin: A clean-label low-HLB emulsifier to replace PGPR in w/o and w/o/w emulsions. Journal of Colloid and Interface Science, 581, 836–846. https://doi.org/10.1016/j.jcis.2020.07.149

    Article  ADS  CAS  PubMed  Google Scholar 

  • Barbosa, B. S. T., & Garcia-Rojas, E. E. (2022). Double emulsions as delivery systems for iron: Stability kinetics and improved bioaccessibility in infants and adults. Current Research in Food Science. https://doi.org/10.1016/j.crfs.2022.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Beldarrain-Iznaga, T., Villalobos-Carvajal, R., Sevillano-Armesto, E., & Leiva-Vega, J. (2021). Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Research International, 141, 110136. https://doi.org/10.1016/j.foodres.2021.110136

    Article  CAS  PubMed  Google Scholar 

  • Brower, K. K., Khariton, M., Suzuki, P. H., Still, C., Kim, G., Calhoun, S. G. K., et al. (2020). Double emulsion picoreactors for high-throughput single-cell encapsulation and phenotyping via FACS. Analytical Chemistry, 92(19), 13262–13270. https://doi.org/10.1021/ACS.ANALCHEM.0C02499/SUPPL_FILE/AC0C02499_SI_002.MOV

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buyukkestelli, H. I., & El, S. N. (2021). Enhancing sweetness using double emulsion technology to reduce sugar content in food formulations. Innovative Food Science & Emerging Technologies, 74, 102809.

    Article  Google Scholar 

  • Cai, B., Ji, T. T., Wang, N., Li, X. B., He, R. X., Liu, W., et al. (2019). A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells. Lab on a Chip, 19(3), 422–431. https://doi.org/10.1039/C8LC01130C

    Article  CAS  PubMed  Google Scholar 

  • Campos-Montiel, R. G., Santos-Ordoñez, N., Almaraz-Buendía, I., Aguirre-Álvarez, G., Espino-García, J. J., Ludeña-Urquizo, F. E., et al. (2021). Impact of incorporating double emulsions with bioactive compounds of acid cactus fruits in emulsified meat products during storage. Journal of Food Processing and Preservation, 45(5), e15477.

    Article  CAS  Google Scholar 

  • Chaudhary, N., Sabikhi, L., Hussain, S. A., Kumar, R., & Choudhary, U. (2020). Emblicanin rich Emblica officinalis encapsulated double emulsion and its antioxidant stability during storage. European Journal of Lipid Science and Technology, 122(4), 1–10. https://doi.org/10.1002/ejlt.201900316

    Article  CAS  Google Scholar 

  • Cheong, A. M., & Nyam, K. L. (2016). Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of β-cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. Journal of Food Engineering, 183, 24–31. https://doi.org/10.1016/j.jfoodeng.2016.03.012

    Article  CAS  Google Scholar 

  • Choi, M. J., Choi, D., Lee, J., & Jo, Y. J. (2020). Encapsulation of a bioactive peptide in a formulation of W1/O/W2-type double emulsions: Formation and stability. Food Structure, 25, 100145. https://doi.org/10.1016/j.foostr.2020.100145

    Article  Google Scholar 

  • Díaz-Ruiz, R., Valdeón, I., Álvarez, J. R., Matos, M., & Gutiérrez, G. (2021). Simultaneous encapsulation of trans-resveratrol and vitamin D3 in highly concentrated double emulsions. Journal of the Science of Food and Agriculture, 101(9), 3654–3664. https://doi.org/10.1002/jsfa.10995

    Article  CAS  PubMed  Google Scholar 

  • Dima, C., & Dima, S. (2020). Bioaccessibility study of calcium and vitamin D3 co-microencapsulated in water-in-oil-in-water double emulsions. Food Chemistry, 303, 125416. https://doi.org/10.1016/j.foodchem.2019.125416

  • Ding, M., Liu, L., Zhang, T., Tao, N., Wang, X., & Zhong, J. (2021). Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides. Food Chemistry, 336, 127686. https://doi.org/10.1016/j.foodchem.2020.127686

  • Ding, S., Serra, C. A., Vandamme, T. F., Yu, W., & Anton, N. (2019). Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. Journal of Controlled Release, 295, 31–49. https://doi.org/10.1016/j.jconrel.2018.12.037

    Article  CAS  PubMed  Google Scholar 

  • Dupont, D., le Feunteun, S., Marze, S., & Souchon, I. (2018). Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innovative Food Science and Emerging Technologies, 46(October), 83–90. https://doi.org/10.1016/j.ifset.2017.10.005

    Article  CAS  Google Scholar 

  • Eisinaitė, V., Leskauskaitė, D., Pukalskienė, M., & Venskutonis, P. R. (2020). Freeze-drying of black chokeberry pomace extract–loaded double emulsions to obtain dispersible powders. Journal of Food Science, 85(3), 628–638. https://doi.org/10.1111/1750-3841.14995

    Article  CAS  PubMed  Google Scholar 

  • Eslami, P., Davarpanah, L., & Vahabzadeh, F. (2017). Encapsulating role of β-cyclodextrin in formation of Pickering water-in-oil-in-water (W1/O/W2) double emulsions containing Lactobacillus dellbrueckii. Food Hydrocolloids, 64, 133–148. https://doi.org/10.1016/j.foodhyd.2016.10.035

    Article  CAS  Google Scholar 

  • Estrada-Fernández, A. G., Román-Guerrero, A., Jiménez-Alvarado, R., Lobato-Calleros, C., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). Stabilization of oil-in-water-in-oil (O1/W/O2) Pickering double emulsions by soluble and insoluble whey protein concentrate-gum Arabic complexes used as inner and outer interfaces. Journal of Food Engineering, 221, 35–44. https://doi.org/10.1016/j.jfoodeng.2017.10.006

    Article  CAS  Google Scholar 

  • Evageliou, V., Panagopoulou, E., & Mandala, I. (2019). Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing whey protein isolate, bacterial cellulose and salt. Food Chemistry, 281, 171–177. https://doi.org/10.1016/j.foodchem.2018.12.105

    Article  CAS  PubMed  Google Scholar 

  • Frakolaki, G., Katsouli, M., Giannou, V., & Tzia, C. (2020). Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process. Lwt, 130, 109671. https://doi.org/10.1016/j.lwt.2020.109671

  • Fu, J., Zhu, Y., Cheng, F., Zhang, S., Xiu, T., Hu, Y., & Yang, S. (2021). A composite chitosan derivative nanoparticle to stabilize a W1/O/W2 emulsion: Preparation and characterization. Carbohydrate Polymers, 256, 117533. https://doi.org/10.1016/j.lwt.2020.109671

  • Gao, Y., Li, X., Xie, Y., Huang, X., Cheng, C., McClements, J.D., Zhang, L., Chen, X., Zou, L., Wei, L. (2022). Encapsulation of bitter peptides in diphasic gel double emulsions: Bitterness masking, sustained release and digestion stability. 162, 112205. https://doi.org/10.1016/j.foodres.2022.112205

  • Gharehbeglou, P., Jafari, S. M., Hamishekar, H., Homayouni, A., & Mirzaei, H. (2019). Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering, 245, 139–148. https://doi.org/10.1016/j.jfoodeng.2018.10.016

    Article  CAS  Google Scholar 

  • Gharehbeglou, P., Jafari, S. M., Homayouni, A., Hamishekar, H., & Mirzaei, H. (2019b). Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids, 89, 44–55. https://doi.org/10.1016/j.foodhyd.2018.10.020

    Article  CAS  Google Scholar 

  • Goibier, L., Pillement, C., Monteil, J., Faure, C., & Leal-Calderon, F. (2020). Preparation of multiple water-in-oil-in-water emulsions without any added oil-soluble surfactant. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 590(January), 124492. https://doi.org/10.1016/j.colsurfa.2020.124492

    Article  CAS  Google Scholar 

  • Han, L., Lu, K., Zhou, S., Qi, B., & Li, Y. (2022). Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chemistry, 369, 130918. https://doi.org/10.1016/j.foodchem.2021.130918

  • Harimurti, N., Nasikin, M., & Mulia, K. (2021). Water-in-oil-in-water nanoemulsions containing temulawak (Curcuma xanthorriza Roxb) and red dragon fruit (Hylocereus polyrhizus) extracts. Molecules, 26(1), 1–11. https://doi.org/10.3390/molecules26010196

    Article  CAS  Google Scholar 

  • Heck, R. T., Lorenzo, J. M., dos Santos, B. A., Cichoski, A. J., de Menezes, C. R., & Campagnol, P. C. B. (2020). Microencapsulation of healthier oils: An efficient strategy to improve the lipid profile of meat products. Current Opinion in Food Science, 40, 6–12. https://doi.org/10.1016/j.cofs.2020.04.010

    Article  CAS  Google Scholar 

  • Heidari, F., Mahdi, S., Mohammad, A., & Malekjani, N. (2022). Stability and release mechanisms of double emulsions loaded with bioactive compounds ; A critical review. Advances in Colloid and Interface Science, 299, 102567. https://doi.org/10.1016/j.cis.2021.102567

  • Herzi, S., & Essafi, W. (2019). Crystallizable W/O/W double emulsions made with milk fat: Formulation, stability and release properties. Food Research International, 116, 145–156. https://doi.org/10.1016/j.foodres.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  • Herzi, S., & Essafi, W. (2020). Magnesium release behavior from W/O/W emulsions incorporated into yogurt: Application to food supplementation. Journal of Food Processing and Preservation, 44(12), e14942. https://doi.org/10.1111/jfpp.14942

  • Huang, H., Wang, D., Belwal, T., Dong, L., Lu, L., Zou, Y., et al. (2021). A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chemistry, 356, 1–10. https://doi.org/10.1016/j.foodchem.2021.129704

    Article  CAS  Google Scholar 

  • Ilyasoglu Buyukkestelli, H., & El, S. N. (2019). Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering, 263(July), 446–453. https://doi.org/10.1016/j.jfoodeng.2019.07.026

    Article  CAS  Google Scholar 

  • Iqbal, S., Chen, X. D., Kirk, T. V., & Huang, H. (2020). Controlling the rheological properties of W1/O/W2 multiple emulsions using osmotic swelling: Impact of WPI-pectin gelation in the internal and external aqueous phases. Colloids and Surfaces b: Biointerfaces, 185, 110629.

    Article  CAS  PubMed  Google Scholar 

  • Jolayemi, O. S., Stranges, N., Flamminii, F., Casiraghi, E., & Alamprese, C. (2021). Influence of free and encapsulated olive leaf phenolic extract on the storage stability of single and double emulsion salad dressings. Food and Bioprocess Technology, 14(1), 93–105. https://doi.org/10.1007/s11947-020-02574-y

    Article  CAS  Google Scholar 

  • Kabakci, C., Sumnu, G., Sahin, S., & Oztop, M. H. (2021). Encapsulation of magnesium with lentil flour by using double emulsion to produce magnesium enriched cakes. Food and Bioprocess Technology, 14(10), 1773–1790. https://doi.org/10.1007/s11947-021-02672-5

    Article  CAS  Google Scholar 

  • Kanha, N., Regenstein, J. M., Surawang, S., Pitchakarn, P., & Laokuldilok, T. (2021). Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chemistry, 340, 127950. https://doi.org/10.1016/j.foodchem.2020.127950

  • Keršiene, M., Jasutiene, I., Eisinaite, V., Venskutonis, P. R., & Leskauskaite, D. (2020). Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food and Function, 11(3), 2195–2207. https://doi.org/10.1039/d0fo00021c

    Article  CAS  PubMed  Google Scholar 

  • Khadem, B., Khellaf, M., & Sheibat-Othman, N. (2020). Investigating swelling-breakdown in double emulsions. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 585, 124181. https://doi.org/10.1016/j.colsurfa.2019.124181

  • Klojdová, I., Kumherová, M., Veselá, K., Horáčková, Š, & Štětina, J. (2022). Functional w1/o/w2 model food product with encapsulated colostrum and high protein content. European Food Research and Technology, 248(3), 899–903. https://doi.org/10.1007/s00217-021-03937-1

    Article  CAS  Google Scholar 

  • Kocaman, E., Can Karaca, A., & Van der Meeren, P. (2020). Release of amino acids encapsulated in PGPR-stabilized W/O/W emulsions is affected by temperature and hydrophobicity. Food Research International, 137, 109527. https://doi.org/10.1016/j.foodres.2020.109527

  • Kocaman, E., Rabiti, D., Murillo Moreno, J. S., Can Karaca, A., & van der Meeren, P. (2022). Oil phase solubility rather than diffusivity determines the release of entrapped amino acids and Di-peptides from water-in-oil-in-water emulsions. Molecules, 27(2), 394. https://doi.org/10.3390/molecules27020394

  • Kumar, Y., & Kumar, V. (2020). Effects of double emulsion (W1/O/W2) containing encapsulated Murraya koenigii berries extract on quality characteristics of reduced-fat meat batter with high oxidative stability. LWT, 127, 109365. https://doi.org/10.1016/j.lwt.2020.109365

  • Lamont, K., Pensini, E., & Marangoni, A. G. (2020). Gelation on demand using switchable double emulsions: A potential strategy for the in situ immobilization of organic contaminants. Journal of Colloid and Interface Science, 562, 470–482. https://doi.org/10.1016/j.jcis.2019.11.090

  • Lebaz, N., Touma, K., & Sheibat-Othman, N. (2023). An original continuous process for double emulsions preparation using static mixers: Focus on the viscosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, 131984. https://doi.org/10.1016/j.colsurfa.2023.131984

  • Leister, N., & Karbstein, H. P. (2020). Evaluating the stability of double emulsions–A review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids and Interfaces, 4(1), 8.

    Article  CAS  Google Scholar 

  • Leong, T. S. H., Ong, L., Gamlath, C. J., Gras, S. L., Ashokkumar, M., & Martin, G. J. O. (2020). Formation of cheddar cheese analogues using canola oil and ultrasonication – A comparison between single and double emulsion systems. International Dairy Journal, 105, 104683. https://doi.org/10.1016/j.idairyj.2020.104683

    Article  CAS  Google Scholar 

  • Leong, T. S. H., Zhou, M., Kukan, N., Ashokkumar, M., & Martin, G. J. O. (2017). Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids, 63, 685–695. https://doi.org/10.1016/j.foodhyd.2016.10.017

    Article  CAS  Google Scholar 

  • Li, S., Sun, J., Yan, J., Zhang, S., Shi, C., McClements, D. J., et al. (2021). Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chemistry, 339, 128016.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Wu, G., Qi, X., Zhang, H., Wang, L., & Qian, H. (2019). Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 274(August 2018), 620–628. https://doi.org/10.1016/j.foodchem.2018.09.002

  • Liu, J., Kharat, M., Tan, Y., Zhou, H., Mundo, J. L. M., & McClements, D. J. (2020a). Impact of fat crystallization on the resistance of W/O/W emulsions to osmotic stress: Potential for temperature-triggered release. Food Research International, 134, 109273.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Tan, Y., Zhou, H., Muriel Mundo, J. L., & McClements, D. J. (2019). Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. Journal of Food Engineering, 254(February), 1–9. https://doi.org/10.1016/j.jfoodeng.2019.02.021

    Article  CAS  Google Scholar 

  • Liu, J., Zhou, H., Muriel Mundo, J. L., Tan, Y., Pham, H., & McClements, D. J. (2020b). Fabrication and characterization of W/O/W emulsions with crystalline lipid phase. Journal of Food Engineering, 273, 109826. https://doi.org/10.1016/j.jfoodeng.2019.109826

    Article  CAS  Google Scholar 

  • Maghamian, N., Goli, M., & Najarian, A. (2021). Ultrasound-assisted preparation of double nano-emulsions loaded with glycyrrhizic acid in the internal aqueous phase and skim milk as the external aqueous phase. LWT, 141, 110850. https://doi.org/10.1016/j.lwt.2021.110850

  • Márquez, A. L., & Wagner, J. R. (2021). Analysis of freeze-thaw behavior of double (W1/O/W2) emulsions by differential scanning calorimetry: Effects of inner salt concentration and solid fat content. Food Biophysics, 16(1), 98–108. https://doi.org/10.1007/s11483-020-09653-9

    Article  Google Scholar 

  • Martins, C., Higaki, N. T. F., Montrucchio, D. P., de Oliveira, C. F., Gomes, M. L. S., Miguel, M. D., et al. (2020). Development of W1/O/W2 emulsion with gallic acid in the internal aqueous phase. Food Chemistry, 314(January), 126174. https://doi.org/10.1016/j.foodchem.2020.126174

    Article  CAS  PubMed  Google Scholar 

  • Massel, V., Fang, Y., & Corredig, M. (2021). Pectin nanoemulsions in multiple emulsions: Stability and encapsulation efficiency. Food Research International, 139, 109950. https://doi.org/10.1016/j.foodres.2020.109950

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J. (2021). Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids, 111(August), 106404. https://doi.org/10.1016/j.foodhyd.2020.106404

    Article  CAS  Google Scholar 

  • Mohammadi, A., Jafari, S. M., Assadpour, E., & Esfanjani, A. F. (2016). Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 82, 816–822.

    Article  CAS  PubMed  Google Scholar 

  • Molet-Rodríguez, A., Martín-Belloso, O., & Salvia-Trujillo, L. (2021). Formation and stabilization of W1/O/W2 emulsions with gelled lipid phases. Molecules, 26(2), 312. https://doi.org/10.3390/molecules26020312

  • Moriano, M. E., & Alamprese, C. (2020). Whey protein concentrate and egg white powder as structuring agents of double emulsions for food applications. Food and Bioprocess Technology, 13(7), 1154–1165. https://doi.org/10.1007/s11947-020-02467-0

    Article  CAS  Google Scholar 

  • Mundo, J. L. M., Zhou, H., Tan, Y., Liu, J., & McClements, D. J. (2021). Enhancing emulsion functionality using multilayer technology: Coating lipid droplets with saponin-polypeptide-polysaccharide layers by electrostatic deposition. Food Research International, 140(October), 109864. https://doi.org/10.1016/j.foodres.2020.109864

    Article  CAS  PubMed  Google Scholar 

  • Muschiolik, G., & Dickinson, E. (2017). Double emulsions relevant to food systems: Preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety, 16(3), 532–555. https://doi.org/10.1111/1541-4337.12261

    Article  CAS  PubMed  Google Scholar 

  • Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., & Chan, E. S. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science & Technology, 100, 320–332.

    Article  CAS  Google Scholar 

  • Niknam, S. M., Escudero, I., & Benito, J. M. (2020). Formulation and preparation of water-in-oil-in-water emulsions loaded with a phenolic-rich inner aqueous phase by application of high energy emulsification methods. Foods, 9(10), 13–28. https://doi.org/10.3390/foods9101411

    Article  CAS  Google Scholar 

  • Nishad, J., Dutta, A., Saha, S., Rudra, S. G., Varghese, E., Sharma, R. R., et al. (2021). Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chemistry, 334, 127561. https://doi.org/10.1016/j.foodchem.2020.127561

  • de Paglarini, C. S., Vidal, V. A. S., Martini, S., Cunha, R. L., & Pollonio, M. A. R. (2022). Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Critical Reviews in Food Science and Nutrition, 62(3), 640–655. https://doi.org/10.1080/10408398.2020.1825322

    Article  CAS  PubMed  Google Scholar 

  • Paximada, P., Howarth, M., & Dubey, B. N. (2021). Double emulsions fortified with plant and milk proteins as fat replacers in cheese. Journal of Food Engineering, 288, 110229. https://doi.org/10.1016/j.jfoodeng.2020.110229

    Article  CAS  Google Scholar 

  • Pimentel-Moral, S., Ochando-Pulido, J. M., Segura-Carretero, A., & Martinez-Ferez, A. (2018). Stabilization of W/O/W multiple emulsion loaded with Hibiscus sabdariffa extract through protein-polysaccharide complexes. LWT - Food Science and Technology, 90, 389–395. https://doi.org/10.1016/j.lwt.2017.12.054

    Article  CAS  Google Scholar 

  • Prichapan, N., McClements, D. J., & Klinkesorn, U. (2021). Utilization of multilayer-technology to enhance encapsulation efficiency and osmotic gradient tolerance of iron-loaded W1/O/W2 emulsions: Saponin-chitosan coatings. Food Hydrocolloids, 112, 106334. https://doi.org/10.1016/j.foodhyd.2020.106334

  • Qin, X. S., Luo, Z. G., & Li, X. L. (2021). An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release. Food Hydrocolloids, 113, 106460. https://doi.org/10.1016/j.foodhyd.2020.106460

  • Rakshit, M., & Srivastav, P. P. (2022). Sensory evaluation and storage stability of fat reduced shortdough biscuit using hydrolysable tannin encapsulated double emulsion as fat replacer. Lwt, 154, 112816. https://doi.org/10.1016/j.lwt.2021.112816

    Article  CAS  Google Scholar 

  • Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2020). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344

  • Robert, P., Zamorano, M., González, E., Silva-Weiss, A., Cofrades, S., & Giménez, B. (2019). Double emulsions with olive leaves extract as fat replacers in meat systems with high oxidative stability. Food Research International, 120(December), 904–912. https://doi.org/10.1016/j.foodres.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  • Saffarionpour, S., & Diosady, L. L. (2021a). Multiple emulsions for enhanced delivery of vitamins and iron micronutrients and their application for food fortification. Food and Bioprocess Technology, 14(4), 587–625.

    Article  CAS  Google Scholar 

  • Sánchez-López, E., Guerra, M., Dias-Ferreira, J., Lopez-Machado, A., Ettcheto, M., Cano, A., et al. (2019). Current applications of nanoemulsions in cancer therapeutics. Nanomaterials, 9(6), 821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafiei, M., Kazemzadeh, Y., Shirazy, G. M., & Riazi, M. (2022). Evaluating the role of salts on emulsion properties during water-based enhanced oil recovery: Ion type, concentration, and water content. Journal of Molecular Liquids, 364, 120028.

    Article  CAS  Google Scholar 

  • Sheth, T., Seshadri, S., Prileszky, T., & Helgeson, M. E. (2020). Multiple Nanoemulsions. Nature Reviews Materials, 5(3), 214–228. https://doi.org/10.1038/s41578-019-0161-9

    Article  ADS  Google Scholar 

  • Shi, A., Feng, X., Wang, Q., & Adhikari, B. (2020). Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocolloids, 109, 106117. https://doi.org/10.1016/j.foodhyd.2020.106117

    Article  CAS  Google Scholar 

  • Shi, A., Wang, J., Guo, R., Feng, X., Ge, Y., Liu, H., et al. (2021). Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. Journal of Functional Foods, 87, 104717. https://doi.org/10.1016/j.jff.2021.104717

    Article  CAS  Google Scholar 

  • Silva, M., Anh Bui, T. H., Dharmadana, D., Zisu, B., & Chandrapala, J. (2020). Ultrasound-assisted formation of double emulsions stabilized by casein-whey protein mixtures. Food Hydrocolloids, 109(June), 106143. https://doi.org/10.1016/j.foodhyd.2020.106143

    Article  CAS  Google Scholar 

  • Silva, M., & Chandrapala, J. (2021). Ultrasonic emulsification of milk proteins stabilized primary and double emulsions: A review. Food Reviews International, 00(00), 1–23. https://doi.org/10.1080/87559129.2021.1934006

    Article  CAS  Google Scholar 

  • Sim, Y. Y., & Nyam, K. L. (2021). Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Industrial Crops and Products, 167(1), 1–11. https://doi.org/10.1016/j.indcrop.2021.113491

  • Šipailienė, A., Šlimaitė, G., Jeznienė, S., Venskutonis, P. R., & Leskauskaitė, D. (2022). W/O/W double emulsion-loaded alginate capsules containing Lactobacillus plantarum and lipophilic sea buckthorn (Hippophae rhamnoides L.) pomace extract in different phases. Food Science and Technology International, 28(5), 97–407. https://doi.org/10.1177/10820132211018036

  • Sneha, K., & Kumar, A. (2022). Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innovative Food Science and Emerging Technologies, 76, 102914. https://doi.org/10.1016/j.ifset.2021.102914

  • Snoussi, A., Chouaibi, M., Bouzouita, N., & Hamdi, S. (2020). Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties. Journal of Molecular Liquids, 311, 113304. https://doi.org/10.1016/j.molliq.2020.113304

    Article  CAS  Google Scholar 

  • Stasse, M., Laurichesse, E., Ribaut, T., Anthony, O., Héroguez, V., & Schmitt, V. (2020). Formulation of concentrated oil-in-water-in-oil double emulsions for fragrance encapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 592, 124564. https://doi.org/10.1016/j.colsurfa.2020.124564

  • Sun, R., & Xia, Q. (2020). In vitro digestion behavior of (W1/O/W2) double emulsions incorporated in alginate hydrogel beads: Microstructure, lipolysis, and release. Food Hydrocolloids, 107, 1–11. https://doi.org/10.1016/j.foodhyd.2020.105950

  • Taha, A., Ahmed, E., Ismaiel, A., Ashokkumar, M., Xu, X., Pan, S., & Hu, H. (2020). Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 105, 363–377. https://doi.org/10.1016/j.tifs.2020.09.024

    Article  CAS  Google Scholar 

  • Tang, C. H. (2020). Globular proteins as soft particles for stabilizing emulsions: Concepts and strategies. Food Hydrocolloids, 103, 105664. https://doi.org/10.1016/j.foodhyd.2020.105664

  • Tang, X.-Y., Wang, Z.-M., Meng, H.-C., Lin, J.-W., Guo, X.-M., Zhang, T., et al. (2021). Robust W/O/W emulsion stabilized by genipin-cross-linked sugar beet pectin-bovine serum albumin nanoparticles: Co-encapsulation of betanin and curcumin. Journal of Agricultural and Food Chemistry, 69(4), 1318–1328.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, L. G., Rezende, S., Fernandes, A., Fernandes, I. P., Barros, L., Barreira, J. C. M., et al. (2022). Water-in-oil-in-water double emulsions as protective carriers for Sambucus nigra L. coloring systems. Molecules, 27(2), 552. https://doi.org/10.3390/molecules27020552

  • Teixé-Roig, J., Oms-Oliu, G., Ballesté-Muñoz, S., Odriozola-Serrano, I., & Martín-Belloso, O. (2022). Encapsulation and controlled release of phycocyanin during the in vitro digestion using polysaccharide-added double emulsions (W1/O/W2). Food Structure, 31, 1–10. https://doi.org/10.1016/j.foostr.2021.100249

  • Tenorio-Garcia, E., Araiza-Calahorra, A., Simone, E., & Sarkar, A. (2022). Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocolloids, 128, 107601. https://doi.org/10.1016/J.FOODHYD.2022.107601

  • Tessaro, L., Luciano, C. G., Bittante, Q. B., & A. M., Lourenço, R. V., Martelli-Tosi, M., & José do Amaral Sobral, P. (2021). Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food Hydrocolloids, 113, 1–12. https://doi.org/10.1016/j.foodhyd.2020.106523

  • Tian, H., Xiang, D., & Li, C. (2021). Tea polyphenols encapsulated in W/O/W emulsions with xanthan gum–locust bean gum mixture: Evaluation of their stability and protection. International Journal of Biological Macromolecules, 175, 40–48. https://doi.org/10.1016/j.ijbiomac.2021.01.161

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Song, M., Zhao, Z., Chen, X., Cai, J., Cao, Y., & Xiao, J. (2020). Lactobacillus acidophilus loaded Pickering double emulsion with enhanced viability and colon-adhesion efficiency. LWT-Food Science and Technology, 121, 108928. https://doi.org/10.1016/j.lwt.2019.108928

  • Wang, Y., Hartel, R. W., & Zhang, L. (2021). The stability of aerated emulsions: Effects of emulsifier synergy on partial coalescence and crystallization of milk fat. Journal of Food Engineering, 291, 110257. https://doi.org/10.1016/j.jfoodeng.2020.110257

  • Wankhede, V. P., Sharma, P., Hussain, S. A., & Singh, R. R. B. (2020). Structure and stability of W1/O/W2 emulsions as influenced by WPC and NaCl in inner aqueous phase. Journal of Food Science and Technology, 57(9), 3482–3492. https://doi.org/10.1007/s13197-020-04383-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, J., Lu, X., & Huang, Q. (2017). Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocolloids, 62, 230–238. https://doi.org/10.1016/j.foodhyd.2016.08.014

    Article  CAS  Google Scholar 

  • Yang, J., Qiu, C., Li, G., Lee, W. J., Tan, C. P., Lai, O. M., & Wang, Y. (2020). Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions. Food Chemistry, 327(January), 127014. https://doi.org/10.1016/j.foodchem.2020.127014

    Article  CAS  PubMed  Google Scholar 

  • Ying, X., Gao, J., Lu, J., Ma, C., Lv, J., Adhikari, B., & Wang, B. (2021). Preparation and drying of water-in-oil-in-water (W/O/W) double emulsion to encapsulate soy peptides. Food Research International, 141(January), 110148. https://doi.org/10.1016/j.foodres.2021.110148

    Article  CAS  PubMed  Google Scholar 

  • Zaghian, N., & Goli, M. (2020). Optimization of the production conditions of primary (W1/O) and double (W1/O/W2) nano-emulsions containing vitamin B12 in skim milk using ultrasound wave by response surface methodology. Journal of Food Measurement and Characterization, 14(6), 3216–3226. https://doi.org/10.1007/s11694-020-00567-1

    Article  Google Scholar 

  • Zeininger, L., Nagelberg, S., Harvey, K. S., Savagatrup, S., Herbert, M. B., Yoshinaga, K., et al. (2019). Rapid detection of Salmonella enterica via directional emission from carbohydrate-functionalized dynamic double emulsions. ACS Central Science, 5(5), 789–795. https://doi.org/10.1021/ACSCENTSCI.9B00059/ASSET/IMAGES/LARGE/OC-2019-00059A_0003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., McClements, D. J., Wei, Z., Wang, G., Liu, X., & Liu, F. (2020). Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition, 60(12), 2083–2097.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Yin, D., Chen, W., Liu, B., & Zhang, X. (2019). A comprehensive review of emulsion and its field application for enhanced oil recovery. Energy Science & Engineering, 7(4), 1046–1058. https://doi.org/10.1002/ESE3.354

    Article  CAS  Google Scholar 

  • Zhu, Q., Pan, Y., Jia, X., Li, J., Zhang, M., & Yin, L. (2019). Review on the stability mechanism and application of water-in-oil emulsions encapsulating various additives. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1660–1675. https://doi.org/10.1111/1541-4337.12482

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by UCSI University Kuala Lumpur through the Research Excellence & Innovation Grant, Project number REIG-FAS-2020/029.

Author information

Authors and Affiliations

Authors

Contributions

Elaine: conceptualization, investigation, methodology, visualization, and writing—original draft. Bhesh Bhandari: writing—review and editing. Chin Ping Tan: writing (review and editing). Nyam Kar Lin: conceptualization, project administration, supervision, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Kar Lin Nyam.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elaine, E., Bhandari, B., Tan, C.P. et al. Recent Advances in the Formation, Stability, and Emerging Food Application of Water-in-Oil-in-Water Double Emulsion Carriers. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03350-y

Keywords

Navigation