Skip to main content
Log in

Analysis of Freeze-Thaw Behavior of Double (W1/O/W2) Emulsions by Differential Scanning Calorimetry: Effects of Inner Salt Concentration and Solid Fat Content

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work is focused on the study of freeze-thaw behavior of double (W1/O/W2) emulsions by the application of a cooling-heating-cooling cycle by differential scanning calorimetry. Emulsions were prepared with sodium caseinate as hydrophilic emulsifier in outer aqueous (W2) phase and sunflower oil (SO) and/or interesterified vegetable fat (VF) plus polyglycerol polyricinoleate as lipophilic emulsifier in lipid phase. The effects of sodium chloride concentration in inner aqueous (W1) phase and solid fat content in lipid phase were analyzed. In all cases, W1 phase froze at lower temperature than W2 phase because higher undercooling was required for the crystallization of inner water droplets. In the absence of VF, the system with low salt concentration showed water diffusion from undercooled W1 phase to frozen W2 phase at the first cooling stage, due to the lower vapor pressure of ice. However, at the second cooling stage, this phenomenon was not observed and partial recovery of inner water was detected, probably because of an osmotic effect. The increase of salt concentration allowed a higher retention of inner water after freezing of W2 phase, attributed to the lowered vapor pressure of W1 phase. The loss of inner water was also restrained or prevented by the presence of VF in lipid phase due to the immobilization of water droplets within a fat crystal network. The crystallization behavior of SO was related to inner water quantity and VF content. This study could be useful for the formulation of W1/O/W2 emulsions with enhanced freeze-thaw stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. de Cindio, D. Cacace, Int. J. Food Sci. Technol. 30, 505–514 (1995)

    Article  Google Scholar 

  2. A. Benichou, A. Aserin, N. Garti, Colloids Surf. A Physicochem. Eng. Asp. 294(1-3), 20–32 (2007)

    Article  CAS  Google Scholar 

  3. M. Bonnet, M. Cansell, A. Berkaoui, M.H. Ropers, M. Anton, F. Leal-Calderon, Food Hydrocoll. 23(1), 92–101 (2009)

    Article  CAS  Google Scholar 

  4. A.L. Márquez, J.R. Wagner, J. Texture Stud. 41, 651–671 (2010)

    Article  Google Scholar 

  5. J. O’Regan, D.M. Mulvihill, Food Res. Int. 43(1), 224–231 (2010)

    Article  Google Scholar 

  6. T.A. Comunian, M. Thomazini, A.J. Gouvêa Alves, F.E. de Matos Junior, J.C. de Carvalho Balieiro, C.S. Favaro-Trindade, Food Res. Int. 52(1), 373–379 (2013)

    Article  CAS  Google Scholar 

  7. I. Klojdová, J. Štětina, Š. Horáčková, Chem. Eng. Technol. 42(4), 715–727 (2019)

    Article  Google Scholar 

  8. G. Muschiolik, E. Dickinson, Compr. Rev. Food Sci. Food Saf. 16(3), 532–555 (2017)

    Article  CAS  Google Scholar 

  9. R. Mezzenga, B.M. Folmer, E. Hughes, Langmuir 20, 3574–3582 (2004)

    Article  CAS  Google Scholar 

  10. F. Leal-Calderon, S. Homer, A. Goh, L. Lundin, Food Hydrocoll. 27(1), 30–41 (2012)

    Article  CAS  Google Scholar 

  11. N. Garti, A. Aserin, I. Tiunova, H. Binyamin, J. Am. Oil Chem. Soc. 76(3), 383–389 (1999)

    Article  CAS  Google Scholar 

  12. S. Frasch-Melnik, F. Spyropoulos, I.T. Norton, J. Colloid Interface Sci. 350(1), 178–185 (2010)

    Article  CAS  Google Scholar 

  13. E.C. Rojas, K.D. Papadopoulos, Langmuir 23(13), 6911–6917 (2007)

    Article  CAS  Google Scholar 

  14. A. Kovács, I. Csóka, M. Kónya, E. Csányi, A. Fehér, I. Erős, J. Therm, Anal. Calorim. 82(2), 491–497 (2005)

    Article  Google Scholar 

  15. D. Clausse, F. Gomez, I. Pezron, L. Komunjer, C. Dalmazzone, Adv. Colloid Interf. Sci. 117(1-3), 59–74 (2005)

    Article  CAS  Google Scholar 

  16. A. Schuch, K. Köhler, H.P. Schuchmann, J. Therm, Anal. Calorim. 111, 1881–1890 (2013)

    Article  CAS  Google Scholar 

  17. S. Charoenrein, D.S. Reid, Thermochim. Acta 156, 373–381 (1989)

    Article  CAS  Google Scholar 

  18. D. Clausse, F. Gomez, C. Dalmazzone, C. Noik, J. Colloid Interface Sci. 287(2), 694–703 (2005)

    Article  CAS  Google Scholar 

  19. S. Ghosh, D. Rousseau, J. Colloid Interface Sci. 339(1), 91–102 (2009)

    Article  CAS  Google Scholar 

  20. E. Magnusson, C. Rosén, L. Nilsson, Food Hydrocoll. 25(4), 707–715 (2011)

    Article  CAS  Google Scholar 

  21. S. Matsumoto, W.W. Kang, J. Dispers, Sci. Technol. 10, 455–482 (1989)

    Google Scholar 

  22. M.P. Pérez, J.R. Wagner, A.L. Márquez, Eur. J. Lipid Sci. Technol. 119(10), 1600447 (2017)

    Article  Google Scholar 

  23. D.D. Jenkins, Phys. Educ. 17(2), 82–83 (1982)

    Article  Google Scholar 

  24. A.L. Márquez, M.P. Pérez, J.R. Wagner, J. Am. Oil Chem. Soc. 90(4), 467–473 (2013)

    Article  Google Scholar 

  25. M.P. Pérez, M.F. Tesei, J.R. Wagner, A.L. Márquez, J. Texture Stud. 45, 396–407 (2014)

    Article  Google Scholar 

  26. A.L. Márquez, A. Medrano, L.A. Panizzolo, J.R. Wagner, J. Colloid Interface Sci. 341(1), 101–108 (2010)

    Article  Google Scholar 

  27. M.P. Aronson, M.F. Petko, J. Colloid Interface Sci. 159(1), 134–149 (1993)

    Article  CAS  Google Scholar 

  28. D. Clausse, I. Pezron, L. Komunjer, Colloids Surf. A Physicochem. Eng. Asp. 152(1-2), 23–29 (1999)

    Article  CAS  Google Scholar 

  29. L. Potier, S. Raynal, M. Seiller, J.L. Grossiord, D. Clausse, Thermochim. Acta 204(1), 145–155 (1992)

    Article  CAS  Google Scholar 

  30. T. Hatakeyama, H. Hatakeyama, K. Nakamura, Thermochim. Acta 253, 137–148 (1995)

    Article  CAS  Google Scholar 

  31. A.B. Arons, C.F. Kientzler, Trans. Am. Geophys. Union 35(5), 722–728 (1954)

    Article  CAS  Google Scholar 

  32. M. Cerdeira, S. Martini, R.J. Candal, M.L. Herrera, J. Am. Oil Chem. Soc. 83(6), 489–496 (2006)

    Article  CAS  Google Scholar 

  33. K. Shimamura, S. Ueno, Y. Miyamoto, K. Sato, Cryst. Growth Des. 13(11), 4746–4754 (2013)

    Article  CAS  Google Scholar 

  34. M.A. Fontenele Domingues, A.P. Badan Ribeiro, M.C. Chiu, L.A. Guaraldo Gonçalves, LWT-Food Sci. Technol. 62(1), 122–130 (2015)

    Article  CAS  Google Scholar 

  35. N. Garti, H. Binyamin, A. Aserin, J. Am. Oil Chem. Soc. 75(12), 1825–1831 (1998)

    Article  CAS  Google Scholar 

  36. D.J. McClements, S.R. Dungan, J.B. German, C. Simoneau, J.E. Kinsella, J. Food Sci. 58(5), 1148–1151 (1993)

    Article  CAS  Google Scholar 

  37. K. Sato, Chem. Eng. Sci. 56(7), 2255–2265 (2001)

    Article  CAS  Google Scholar 

  38. E. Fredrick, P. Walstra, K. Dewettinck, Adv. Colloid Interf. Sci. 153(1-2), 30–42 (2010)

    Article  CAS  Google Scholar 

  39. M.B. Munk, M.L. Andersen, Eur. J. Lipid Sci. Technol. 117(10), 1627–1635 (2015)

    Article  CAS  Google Scholar 

  40. S.M. Hodge, D. Rousseau, J. Am. Oil Chem. Soc. 82(3), 159–164 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Agencia Nacional de Promoción Científica y Tecnológica (FONCyT; grant number: PICT-2016-2699); and Universidad Nacional de Quilmes (Program I + D; grant number: 53/1037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés L. Márquez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez, A.L., Wagner, J.R. Analysis of Freeze-Thaw Behavior of Double (W1/O/W2) Emulsions by Differential Scanning Calorimetry: Effects of Inner Salt Concentration and Solid Fat Content. Food Biophysics 16, 98–108 (2021). https://doi.org/10.1007/s11483-020-09653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09653-9

Keywords

Navigation