Skip to main content
Log in

Intelligent Recommendation Framework for Iron Ore Matching Based on SA2PSO and Machine Learning to Reduce CO2 Emissions

  • Applications of Machine Learning in Materials Development and Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Optimization of sinter ore allocation is a key step in the steel production process, which has become the most important measure for steel enterprises to effectively reduce cost, improve quality, save energy and reduce emissions. In this paper, the first intelligent recommendation model for the sintering dosing scheme considering cost, quality and carbon emission in the sintering process is developed using the SA2PSO optimization algorithm combined with machine learning. To improve the optimization accuracy and speed of the PSO algorithm, the SA2PSO algorithm is based on the adaptive and simulated annealing operations to achieve different stages of particle optimization, and the convergence speed is reduced by about 5 s compared with PSO while ensuring the optimization accuracy. Based on the optimal solution, the random forest algorithm was used to achieve a high-accuracy prediction of quality. For carbon emission, this paper for the first time to our knowledge converts carbon tax into iron ore sintering cost, establishes a dosing scheme considering cost carbon emission and quality and finally establishes an intelligent recommendation model for sintering dosing based on VIKOR. The model can be used for optimal ore allocation in sintering to achieve low cost, high quality and low CO2 emission in iron ore sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Wang, J. Zhang, Z. Liu, C. Du, J. Schenk, J. Shao, and Y. Zhang, J. Clean. Prod. 234, 157–170 https://doi.org/10.1016/j.jclepro.2019.06.186 (2019).

    Article  Google Scholar 

  2. L. Ren, S. Zhou, T. Peng, and X. Ou, Renew. Sustain. Energy Rev. 143, 110846 https://doi.org/10.1016/j.rser.2021.110846 (2021).

    Article  Google Scholar 

  3. Y. Wang, Z. Liu, J. Zhang, Y. Zhang, L. Niu, and Q. Cheng, J. Clean. Prod. 252, 119855 https://doi.org/10.1016/j.jclepro.2019.119855 (2020).

    Article  Google Scholar 

  4. M. Hao, Q. Yu, C. Wei, Y. Chen, L. Chai, and Y. Ge, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-022-06765-w (2022).

    Article  Google Scholar 

  5. K.J. Li, J.L. Zhang, Z.J. Liu, B.X. Su, L.T. Kong, and T.J. Yang, Int. J. Miner. Metall. Mater. 21, 216–224 https://doi.org/10.1007/s12613-014-0888-7 (2014).

    Article  Google Scholar 

  6. C. Feng, H. Zhang, Y. Wang, and Z. Jiang, Shangdong Metall. 33, 24–269 https://doi.org/10.16727/j.cnki.issn1004-4620.2011.03.030 (2011).

    Article  Google Scholar 

  7. Y. Li, M. Wu, W. Cao, C. Wang, and X. Lai, Control Theory Appl. 28(7), 1740–1746 (2011).

    Google Scholar 

  8. L. Sun and X. Wu, Frontier Computing: Theory, Technologies and Applications (FC 2019) (Springer, Singapore, 2020), pp. 98–104. https://doi.org/10.1007/978-981-15-3250-4_12.

    Book  Google Scholar 

  9. X. Shen, L. Chen, S. Xia, X. Qin, and Z. Xie, Sci China Technol. Sci. 60, 1625–1637 https://doi.org/10.1007/s11431-017-9072-9 (2017).

    Article  Google Scholar 

  10. Q. Feng, Q. Li, Y. Wang, and W. Quan, Control Theory Appl. 39, 923–932 https://doi.org/10.7641/CTA.2021.10221 (2022).

    Article  Google Scholar 

  11. C.A.C. Coello, G.T. Pulido, and M.S. Lechuga, IEEE Trans. Evol. Comput. 8, 256–279 https://doi.org/10.1109/TEVC.2004.826067 (2004).

    Article  Google Scholar 

  12. Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, IEEE Trans. Evol. Comput. 12, 80–92 https://doi.org/10.1109/TEVC.2007.902851 (2008).

    Article  Google Scholar 

  13. R. Nshimirimana, A. Abraham, and G. Nothnagel, Neural Comput. Appl. 33, 11355–11385 https://doi.org/10.1007/s00521-020-05555-6 (2021).

    Article  Google Scholar 

  14. J. Kennedy, R. Eberhart, in Proceedings of ICNN'95-International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  15. D. Gan, Technol. Innov. Appl. 12, 11–14 https://doi.org/10.19981/j.CN23-1581/G3.2022.05.003 (2022).

    Article  Google Scholar 

  16. C.M. Yan, G.Y. Lu, Y.T. Liu, X.Y. Deng, in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (IEEE, 2017), pp. 239–242. https://doi.org/10.1109/FSKD.2017.8393146

  17. W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H.S.-H. Chung, Y. Li, and Y.-H. Shi, IEEE Trans. Evol. Comput. 17, 241–258 https://doi.org/10.1109/TEVC.2011.2173577 (2012).

    Article  Google Scholar 

  18. Y. Bi, A. Lam, H. Quan, H. Liu, and C. Wang, Russ. Phys. J. 64, 866–875 https://doi.org/10.1007/s11182-021-02403-5 (2021).

    Article  Google Scholar 

  19. Q. Yan, R. Ma, Y. Ma, and J. Wang, J. Xidan Univ. 48, 120–127 https://doi.org/10.19665/j.issn1001-2400.2021.04.016 (2021).

    Article  Google Scholar 

  20. H.R. Tizhoosh, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06) (IEEE, 2005), pp. 695–701.

  21. P.J. Van Laarhoven, and E.H. Aarts, Simulated Annealing: Theory and Applications (Springer, 1987), pp7–15. https://doi.org/10.1007/978-94-015-7744-1_2.

    Book  Google Scholar 

  22. W. Yang, Z. Yan, and L. Sui, J. North China Inst. Sci. Technol. 12, 100–103 https://doi.org/10.3969/j.issn.1672-7169,2015.02.021 (2015).

    Article  Google Scholar 

  23. Y. Shi, in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) (IEEE: 2001), pp. 81–86. https://doi.org/10.1109/CEC.2001.934374

  24. Y.-W. Leung, and Y. Wang, IEEE Trans. Evol. Comput. 5, 41–53 https://doi.org/10.1109/4235.910464 (2001).

    Article  Google Scholar 

  25. M. Bailera, P. Lisbona, B. Peña, and L.M. Romeo, J. CO2 Util. 46, 101456 https://doi.org/10.1016/j.jcou.2021.101456 (2021).

    Article  Google Scholar 

  26. H. Zhang, W. Sun, W. Li, and G. Ma, Appl. Energy 309, 118485 https://doi.org/10.1016/j.apenergy.2021.118485 (2022).

    Article  Google Scholar 

  27. L. Breiman, Mach. Learn. 45, 5–32 https://doi.org/10.1023/A:1010933404324 (2001).

    Article  Google Scholar 

  28. Z. Maosheng, Vojnoteh. Glas. 70, 1–12 https://doi.org/10.5937/vojtehg70-35366 (2022).

    Article  Google Scholar 

  29. Z.-P. Li, X.-H. Fan, G. Chen, G.-M. Yang, and Y. Sun, Neural Comput. Appl. 28, 2247–2253 https://doi.org/10.1007/s00521-016-2195-x (2017).

    Article  Google Scholar 

  30. F.S. Opricovic and G.-H. Tzeng, Eur. J. Oper. Res. 156, 445–455 https://doi.org/10.1016/S0377-2217(03)00020-1 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (52174291), the Beijing New-star Plan of Science and Technology (Z211100002121115), the China Postdoctoral Science Foundation (2021M690369), the Central Universities Foundation of China (06500170), and the Guangdong Basic & Applied Basic Research Fund Joint Regional Funds-Youth Foundation Projects (2020A1515111008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaozu Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhang, J., Li, Q. et al. Intelligent Recommendation Framework for Iron Ore Matching Based on SA2PSO and Machine Learning to Reduce CO2 Emissions. JOM 76, 120–129 (2024). https://doi.org/10.1007/s11837-023-06211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06211-9

Navigation