Skip to main content
Log in

Statistical Determination of Johnson-Cook Model Parameters for Porous Materials by Machine Learning and Particle Swarm Optimization Algorithm

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study developed a reliable methodology combined by the machine learning technique, that is, multi-task Gaussian process regression (MTGPR) and particle swarm optimization (PSO) algorithm to identify the Johnson-Cook (JC) constants for porous structures rapidly, meanwhile reducing the experimental consumption. Ti6Al4V (TC4) porous samples with three different porosities were designed based on lattice Weaire–Phelan (LWP) structure and manufactured by selective laser melting technology. Uniaxial compressive tests of the built LWP samples were carried out to measure their mechanical properties. The resultant JC constants derived from MTGPR-PSO model were imported into the compressive finite element analyses (FEAs) of LWP structures with various porosities. It proved that the simulated mechanical behaviors presented an explicit agreement with the experimental results. Furthermore, other JC models of TC4 porous material from previous reports were utilized to perform the compressive FEAs of LWP samples, indicating that the JC models could not be shared among the porous structures fabricated by different manufacturing processes or with various lattice structures. Hence, an effective method like the MTGPR-PSO model was urgently required to identify the JC constants of porous samples customized by additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1–4, p 87–98.

    Google Scholar 

  2. S. Wang, L. Liu, K. Li, L. Zhu, J. Chen and Y. Hao, Pore Functionally Graded Ti6Al4V Scaffolds for Bone Tissue Engineering Application, Mater. Des., 2019, 168, p 107643.

    Article  CAS  Google Scholar 

  3. X. Li, L. Xiao and W. Song, Deformation and Failure Modes of Ti-6Al-4V Lattice-Walled Tubes Under Uniaxial Compression, Int. J. Impact. Eng, 2019, 130, p 27–40.

    Article  Google Scholar 

  4. H. Guo, A. Takezawa, M. Honda, C. Kawamura and M. Kitamura, Finite Element Simulation of the Compressive Response of Additively Manufactured Lattice Structures with Large Diameters, Comput. Mater. Sci., 2020, 175, p 109610.

    Article  CAS  Google Scholar 

  5. A. Ataee, Y. Li, M. Brandt and C. Wen, Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications, Acta Mater., 2018, 158, p 354–368.

    Article  CAS  Google Scholar 

  6. H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang and L. Shen, Trabecular-Like Ti-6Al-4V Scaffolds for Orthopedic: Fabrication by Selective Laser Melting and in vitro Biocompatibility, J. Mater. Sci. Tech., 2019, 35(7), p 1284–1297.

    Article  CAS  Google Scholar 

  7. R. Xiao, X. Feng, R. Fan, S. Chen, J. Song, L. Gao and Y. Lu, 3D Printing of Titanium-Coated Gradient Composite Lattices for Lightweight Mandibular Prosthesis, Compos. Part B: Eng., 2020, 193, p 108057.

    Article  CAS  Google Scholar 

  8. H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai and T. Yoneyama, Application of Titanium and Titanium Alloys to Fixed Dental Prostheses, J. Prosthodont. Res., 2019, 63(3), p 266–270.

    Article  Google Scholar 

  9. S. Bahl, B.T. Aleti, S. Suwas and K. Chatterjee, Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications, Mater. Des., 2018, 144, p 169–181.

    Article  CAS  Google Scholar 

  10. M. Doroszko, A. Falkowska and A. Seweryn, Image-Based Numerical Modeling of the Tensile Deformation Behavior and Mechanical Properties of Additive Manufactured Ti–6Al–4V Diamond Lattice Structures, Mater. Sci. Eng. A, 2021, 818, p 141362.

    Article  CAS  Google Scholar 

  11. F. Quevedo Gonzalez and N. Nuño, Finite Element Modeling of Manufacturing Irregularities of Porous Materials, Biomater. Biomech. Bioeng., 2016, 3, p 1–14.

    Google Scholar 

  12. S. Ruiz de Galarreta, J.R.T. Jeffers and S. Ghouse, A Validated Finite Element Analysis Procedure for Porous Structures, Mater. Des., 2020, 189, p 108546.

    Article  Google Scholar 

  13. V. Crupi, E. Kara, G. Epasto, E. Guglielmino and H. Aykul, Static Behavior of Lattice Structures Produced via Direct Metal Laser Sintering Technology, Mater. Des., 2017, 135, p 246–256.

    Article  CAS  Google Scholar 

  14. N. Biswas and J.L. Ding, Numerical Study of the Deformation and Fracture Behavior of Porous Ti6Al4V Alloy Under Static and Dynamic Loading, Int. J. Impact. Eng, 2015, 82, p 89–102.

    Article  Google Scholar 

  15. X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao and M. Liu, Mechanical and in vitro Study of an Isotropic Ti6Al4V Lattice Structure Fabricated Using Selective Laser Melting, J. Alloys Compd., 2019, 782, p 209–223.

    Article  CAS  Google Scholar 

  16. H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang and G. Fu, Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting: Design, Mechanical Properties, and Simulation, Int. J. Mech. Sci., 2020, 175, p 105480.

    Article  Google Scholar 

  17. M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma and Z. Ren, Mechanical and Energy Absorption Characteristics of Additively Manufactured Functionally Graded Sheet Lattice Structures with Minimal Surfaces, Int. J. Mech. Sci., 2020, 167, p 105262.

    Article  Google Scholar 

  18. N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng and H. Zhang, Effect of Structural Parameters on Mechanical Properties of Pyramidal Kagome Lattice Material Under Impact Loading, Int. J. Impact. Eng, 2019, 132, p 103313.

    Article  Google Scholar 

  19. Leseur, Experimental Investigations of Material Models for Ti6A1-4V and 2024-T3, 2020

  20. G. Kay, Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model, FAA report, DOT/FAA/AR-03/57, September 2003

  21. P. Li, Constitutive and Failure Behaviour in Selective Laser Melted Stainless Steel for Microlattice Structures, Mater. Sci. Eng. A, 2015, 622, p 114–120.

    Article  CAS  Google Scholar 

  22. Z. Wang and P. Li, Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures, Mater. Sci. Eng. A, 2018, 725, p 350–358.

    Article  CAS  Google Scholar 

  23. P. Hanzl, M. Zetek, T. Bakša and T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts, Procedia Eng., 2015, 100, p 1405–1413.

    Article  Google Scholar 

  24. K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586.

    Article  CAS  Google Scholar 

  25. K. Liu, D. Gu, M. Guo and J. Sun, Effects of Processing Parameters on Densification Behavior, Microstructure Evolution and Mechanical Properties of W-Ti Alloy Fabricated by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2022, 829, p 142177.

    Article  CAS  Google Scholar 

  26. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez and R.B. Wicker, Characterization of Ti–6Al–4V Open Cellular Foams Fabricated by Additive Manufacturing Using Electron Beam Melting, Mater. Sci. Eng. A, 2010, 527(7), p 1861–1868.

    Article  Google Scholar 

  27. F. Kang, S. Han, R. Salgado and J. Li, System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling, Comput. Geotech., 2015, 63, p 13–25.

    Article  Google Scholar 

  28. Y. Zhou, Y. Liu, D. Wang, G. De, Y. Li, X. Liu and Y. Wang, A Novel Combined Multi-Task Learning and Gaussian Process Regression Model for the Prediction of Multi-Timescale and Multi-Component of Solar Radiation, J. Clean. Prod., 2021, 284, p 124710.

    Article  Google Scholar 

  29. J. Yuan, K. Wang, T. Yu and M. Fang, Reliable Multi-Objective Optimization of High-Speed WEDM Process Based on Gaussian Process Regression, Int. J. Mach. Tools Manuf., 2008, 48(1), p 47–60.

    Article  Google Scholar 

  30. M. Gilanifar, M. Parvania, M.E. Hariri, Multi-Task Gaussian Process Learning for Energy Forecasting in IoT-Enabled Electric Vehicle Charging Infrastructure, 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2-16 June 2020, 2020, pp 1-6

  31. P. Nayeri, F. Yang and A.Z. Elsherbeni, Design of Single-Feed Reflectarray Antennas With Asymmetric Multiple Beams Using the Particle Swarm Optimization Method, IEEE Trans. Antennas Propag., 2013, 61(9), p 4598–4605.

    Article  Google Scholar 

  32. A. Unler and A. Murat, A Discrete Particle Swarm Optimization Method for Feature Selection in Binary Classification Problems, Eur. J. Oper. Res., 2010, 206(3), p 528–539.

    Article  Google Scholar 

  33. Y. Xu, W. Zhang, D. Chamoret and M. Domaszewski, Minimizing Thermal Residual Stresses in C/SiC Functionally Graded Material Coating of C/C Composites by Using Particle Swarm Optimization Algorithm, Comput. Mater. Sci., 2012, 61, p 99–105.

    Article  CAS  Google Scholar 

  34. S. Panda and N.P. Padhy, Comparison of Particle Swarm Optimization and Genetic Algorithm for FACTS-Based Controller Design, Appl. Soft Comput., 2008, 8(4), p 1418–1427.

    Article  Google Scholar 

  35. R. Hassan, B. Cohanim, O. de Weck, G. Venter, A Comparison of Particle Swarm Optimization and the Genetic Algorithm, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conferenceed., American Institute of Aeronautics and Astronautics, 2005

  36. M. Hao, C. Wei, X. Liu, Y. Ge and J. Cai, Quantitative Evaluation on Mechanical Characterization of Ti6Al4V Porous Scaffold Designed Based on Weaire-Phelan Structure via Experimental and Numerical Analysis Methods, J. Alloys Compd., 2021, 885, p 160234.

    Article  CAS  Google Scholar 

  37. International Organization for Standardization (ISO), ISO 13314: Mechanical Testing of Metals – Ductility Testing – Compression Test for Porous and Cellular Metals, First edition 2011-12-15, 2011

  38. Y. Prawoto, M. Fanone, S. Shahedi, M.S. Ismail and W.B. Wan Nik, Computational Approach Using Johnson-Cook Model on Dual Phase Steel, Comput. Mater. Sci., 2012, 54, p 48–55.

    Article  CAS  Google Scholar 

  39. C.E. Rasmussen, Gaussian Processes in Machine Learning, Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lecturesed., O. Bousquet, U. von Luxburg, G. Rätsch, Eds., Springer Berlin Heidelberg, 2004, p 63–71

  40. E.V. Bonilla, K.M.A. Chai, C.K.I. Williams, Multi-task Gaussian Process prediction, Proceedings of the 20th International Conf. Neural Information Processing Systemsed., Curran Associates Inc., 2007, p 153–160

  41. R. Couperthwaite, D. Allaire and R. Arróyave, Utilizing Gaussian Processes to Fit High Dimension Thermodynamic Data that Includes Estimated Variability, Comput. Mater. Sci., 2021, 188, p 110133.

    Article  CAS  Google Scholar 

  42. J.L. Loeppky, J. Sacks and W.J. Welch, Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, 2009, 51(4), p 366–376.

    Article  Google Scholar 

  43. R.T. Silvestrini, D.C. Montgomery and B. Jones, Comparing Computer Experiments for the Gaussian Process Model Using Integrated Prediction Variance, Qual. Eng., 2013, 25(2), p 164–174.

    Article  Google Scholar 

  44. Y. Zhang, J.C. Outeiro and T. Mabrouki, On the Selection of Johnson-cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting, Procedia CIRP, 2015, 31, p 112–117.

    Article  Google Scholar 

  45. H. Zhang, Maximum-Likelihood Estimation for Multivariate Spatial Linear Coregionalization Models, Environmetrics, 2007, 18(2), p 125–139.

    Article  Google Scholar 

  46. Y. Liu, Y. Zhou, D. Wang, Y. Wang, Y. Li and Y. Zhu, Classification of Solar Radiation Zones and General Models for Estimating the Daily Global Solar Radiation on Horizontal Surfaces in China, Energy Conv. Manag., 2017, 154, p 168–179.

    Article  Google Scholar 

  47. R. Zhang and X. Xue, A Predictive Model for the Bond Strength of Near-Surface-Mounted FRP Bonded to Concrete, Compos. Struct., 2021, 262, p 113618.

    Article  CAS  Google Scholar 

  48. S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer and D. Pasini, High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints, Acta Biomater., 2016, 30, p 345–356.

    Article  CAS  Google Scholar 

  49. D. Gu and Y. Shen, Processing Conditions and Microstructural Features of Porous 316L Stainless Steel Components by DMLS, Appl. Surf. Sci., 2008, 255(5, Part 1), p 1880–1887.

    Article  CAS  Google Scholar 

  50. R. Hedayati, H. Hosseini-Toudeshky, M. Sadighi, M. Mohammadi-Aghdam and A.A. Zadpoor, Computational Prediction of the Fatigue Behavior of Additively Manufactured Porous Metallic Biomaterials, Int. J. Fatigue, 2016, 84, p 67–79.

    Article  CAS  Google Scholar 

  51. P. Li, Y.E. Ma, W. Sun, X. Qian, W. Zhang and Z. Wang, Fracture and Failure Behavior of Additive Manufactured Ti6Al4V Lattice Structures Under Compressive Load, Eng. Fract. Mech., 2021, 244, p 107537.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Grant Number 81973872], the Natural Science Foundation of Jiangsu Province [Grant Number BK20190309], General University Science Research Project of Jiangsu Province [Grant Number TJ21903].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Yu, Q., Wei, C. et al. Statistical Determination of Johnson-Cook Model Parameters for Porous Materials by Machine Learning and Particle Swarm Optimization Algorithm. J. of Materi Eng and Perform 31, 7176–7190 (2022). https://doi.org/10.1007/s11665-022-06765-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06765-w

Keywords

Navigation