Skip to main content
Log in

Ice cream cone enriched with carob molasses pulp

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Carob fruit (edible part) and carob molasses contains high amount of nutritive components such as minerals (calcium, potassium, phosphorus, iron, etc.), carbohydrates (glucose, fructose and sucrose), polyphenolic compounds with an antioxidant activity and other beneficial components. The carob molasses pulp (CMP) left over from the production of molasses is not utilized properly though it contains important nutritive content such as phytochemicals, antioxidants and especially crude fiber. In this study, dried CMP flour was used instead of wheat flour in the ice cream cone formula. The formulations developed with this finding will make a significant contribution to the increase in the fibre content of ice cream cone. In this study, the chemical (moisture, ash, total sugar, crude fiber, total polyphenol and antioxidant activity) composition of CMP flour and the effects of 5–15% CMP flour addition on physical (crispness and color) and sensory properties (appearance, color, odor, taste, crispness, and overall acceptability) of the cones were investigated. As a result, it is noteworthy that CMP had high crude fiber (29.30%), total phenolic content (3.05% on dry basis) and antioxidant activity (0.91% on dry basis). The results showed that the addition of CMP flour up to 15% into the cone formula reduced L* value, enhanced the desired cacao color and the crispness of cones. The brown color of CMP flour added cones was more appreciated by the panelists significantly. CMP flour addition had no effect on the other sensory properties. Consequently, more nutritious and appreciated cone formulations were developed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Issaoui, G. Flamini, A. Delgado, Sustainability opportunities for mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.). Sustainability 13, 8026 (2021). https://doi.org/10.3390/su13148026

    Article  CAS  Google Scholar 

  2. M.E. Brassesco, T.R.S. Brandao, C.L.M. Silva, M. Pintado, Carob bean (Ceratonia siliqua L.): a new perspective for functional food. Trends Food Sci. Technol. 114, 310–322 (2021). https://doi.org/10.1016/j.tifs.2021.05.037

    Article  CAS  Google Scholar 

  3. L. Tounsi, S. Karra, H. Kechaou, N. Kechaou, Processing, physico-chemical and functional properties of carob molasses and powders. Food Meas. 11, 1440–1448 (2017). https://doi.org/10.1007/s11694-017-9523-4

    Article  Google Scholar 

  4. S. Sanli, O. Guneser, S. Kilicarslan, N. Sanli, Screening of eighteen polyphenolic compounds in different carob pekmez by green capillary electrophoresis method. SN Appl. Sci. 2, 576 (2020). https://doi.org/10.1007/s42452-020-2387-y

    Article  CAS  Google Scholar 

  5. N. Yaman, S. Durakli Velioglu, Use of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in combination with multivariate methods for the rapid determination of the adulteration of grape, carob and mulberry pekmez. Foods 8, 231 (2019). https://doi.org/10.3390/foods8070231

    Article  CAS  PubMed Central  Google Scholar 

  6. A. Badem, Z. Alpkent, Production of ice cream with carob bean pekmez (molasses). Int. J. Environ. Agric. Biotechnol. 3(1), 28–32 (2018). https://doi.org/10.22161/ijeab/3.1.5

    Article  Google Scholar 

  7. E. Bytyqi, Production of functional products from fungi belonging to the Basidiomycetes sp. with biotechnological methods. MSc thesis, Akdeniz University Food Engineering Department, Antalya, Turkey, p. 50 (2018)

  8. Y. Ozdemir, B. Oncel, M. Keceli, Purification of crude fiber from carob molasses pulp and uses in traditional Turkish sucuk. Int. J. Gastron. Food Sci. 25, 100410 (2021). https://doi.org/10.1016/j.ijgfs.2021.100410

    Article  Google Scholar 

  9. H. Demirbas, N. Cetinkaya, Determination of chemical composition, in-vitro digestibility, phenolic compounds and antioxidant activity of carob pulp. Manas J. Agric. Vet. Life Sci. 10(2), 103–109 (2020)

    Google Scholar 

  10. S. Ilhan, Production of bakery products added carob (Locust bean). MSc thesis, Mersin University Food Engineering Department, Mersin, Turkey, p. 68 (2013)

  11. D. Rismawati, M.H. Pulungan, N.L. Rahmah, Utilization of corn flour (Zea mays L) as material subtitution for ice cream cone. J. Food Life Sci. 4(1), 24–33 (2020). https://doi.org/10.21776/ub.jfls.2020.004.01.03

    Article  Google Scholar 

  12. M. Austin, Utilization of sunflower (Helianthus annuus L.) seed butter and Manalagi apple (Malus sylvestris Mill.) pomace powder in making waffle cones. Bachelor thesis, Universitas Pelita Harapan, Indonesia, p. 60 (2021)

  13. Shenzhen Oceanpower Industrial Co Ltd, Ice cream cone having health care function. European Patent Application Publication Number: CN1533960A (2004)

  14. M.J. Daniel, A.L. Dodd, And the PDC winner is: KSU’s sweet-tasting and gluten-free waffle cones! Cereal Foods World 55(1), 9–11 (2010)

    Google Scholar 

  15. J. Kigozi, Y. Byaruhanga, A. Kaaya, N. Banadda, Development of the production process for sorghum ice-cream cones. J. Food Technol. 9(6), 143–149 (2011). https://doi.org/10.3923/jftech.2011.143.149

    Article  CAS  Google Scholar 

  16. J. Kigozi, Y. Byaruhanga, N. Banadda, A. Kaaya, Characterisation of the physico-chemical properties of selected white sorghum grain and flours for the production of ice cream cones. Open Food Sci. J. 7(1), 23–33 (2013). https://doi.org/10.2174/1874256401307010023

    Article  CAS  Google Scholar 

  17. J. Kigozi, N. Banadda, Y. Byaruhanga, A. Kaaya, L. Musoke, Optimization of texture in sorghum ice cream cone production using sensory analysis. Open Food Sci. J. 8, 18–21 (2014). https://doi.org/10.2174/1874256401408010018

    Article  Google Scholar 

  18. J. Kigozi, N. Banadda, Y. Byaruhanga, A. Kaaya, F. Lule, Mathematical modeling of sorghum ice-cream cone texture characteristics using the cone formulation. J. Adv. Food Sci. Technol. 2(2), 71–80 (2015)

    Google Scholar 

  19. J. Kigozi, N. Banadda, Y. Byaruhanga, A. Kaaya, F. Lule, Sorghum ice cream cone texture: correlations between instrumental and sensory analysis. J. Adv. Food Sci. Technol. 3(3), 134–145 (2016)

    Google Scholar 

  20. C. Phuenpipob, D. Thomthong, T. Sakdumrong, Utilization from okara to replace wheat flour in ice-cream cone. Appl. Mech. Mater. 848, 107–110 (2016). https://doi.org/10.4028/www.scientific.net/AMM.848.107

    Article  Google Scholar 

  21. B. Tufan, Evaluation of the effects of legume flour incorporation into wafer sheets. MSc thesis, Middle East Technical University Food Engineering Department, Ankara, Turkey, p. 110 (2018)

  22. M.D. Zanariah, M.H. Nur Zaleqha, M. Lisnurjannah, Utilization of banana peel flour as fibre ingredient in the waffle cones. In: Konvensyen Kebangsaan Kejuruteraan Pertanian dan Makanan, Wisma Tani, Kementerian Pertanian & Industri Asas Tani, Putrajaya, pp. 141–144 (2019)

  23. H. Insiah, M.H. Pulungan, N.L. Rahmah, Ice cream cone product development based on purple sweet potato (Ipomoea batatas L.) (study substituted purple sweet potato flour and baking time). J. Food Life Sci. 4(1), 1–11 (2020). https://doi.org/10.21776/ub.jfls.2020.004.01.01

    Article  Google Scholar 

  24. M.H. Pulungan, E.F.S.M. Santoso, Ice cream cup production using purple sweet potato (Ipomoea batatas L. Poir) as a substitute ingredient. Industria 9(3), 184–194 (2020). https://doi.org/10.21776/ub.industria.2020.009.03.3

    Article  Google Scholar 

  25. Z.M. Dom, N.A.M.Z. Amin, R.K. Basha, Sweet potato peel flour applications in the textural quality of waffle ice cream cone and other food products. Adv. Agric. Food Res. J. 1(2), a0000150 (2020). https://doi.org/10.36877/aafrj.a0000150

    Article  Google Scholar 

  26. R. Charoen, S. Tasana, W. Somprasong, S. Rittisak, W. Saveboworn, Resistant starch from mixed flours (banana, jackfruit seed and job’s tear) and the application in food product. E3S Web Conf. 141, 02004 (2020). https://doi.org/10.1051/e3sconf/202014102004

    Article  CAS  Google Scholar 

  27. AACC, International approved methods of analysis. American Association of Cereal Chemists, 11th edn. (AACC International, St. Paul, 2010)

    Google Scholar 

  28. AOAC, Official Methods of Analysis, 15th edn. (Association of Official Analytical Chemist, Washington DC, 1990)

    Google Scholar 

  29. M.K.A. DuBois, Y.K. Gilli, P.A. Hamilton, Colorimetric method for determination of sugars and related substances. Anal. Chem. J. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  30. A. Ben Hsouna, A.S. Alayed, E.M. Abdallah, Evaluation of antimicrobial activities of crude methanolic extract of pods of Ceratonia siliqua L. against some pathogens and spoilage bacteria. Afr. J. Microbiol. Res. 6(14), 3480–3484 (2012). https://doi.org/10.5897/AJMR11.1613

    Article  Google Scholar 

  31. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  32. W. Brand-Williams, M. Cuvelier, E.C. Berset, Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  33. A.A.A. Mohamed, R. Jowitt, J.G. Brennan, Instrumental and sensory evaluation of crispness: I—in friable foods. J. Food Eng. 1, 55–75 (1982). https://doi.org/10.1016/0260-8774(82)90013-9

    Article  Google Scholar 

  34. H. Stone, J. Sidel, Sensory evaluation practices, 3rd edn. (Academic Press, 2004), p. 374. https://doi.org/10.1016/B978-0-12-672690-9.X5000-8

    Book  Google Scholar 

  35. Yalım, S. Kaya, Production of high purity sugar syrup from carob bean fruit. PhD thesis, Mersin University Food Engineering Department, Mersin, Turkey, p. 161 (2010)

  36. H.J.F. Zunft, W. Lüder, A. Harde, B. Haber, H.J. Graubaum, C. Koebnick, J. Grünwald, Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur. J. Nutr. 42, 235–242 (2003). https://doi.org/10.1007/s00394-003-0438-y

    Article  CAS  PubMed  Google Scholar 

  37. H. El Batal, A. Hasib, F. Dehbi, N. Zaki, A. Ouatmane, A. Boulli, Assessment of nutritional composition of Carob pulp (Ceratonia Siliqua L.) collected from various locations in Morocco. J. Mater. Environ. Sci 7(9), 3278–3285 (2016)

    Google Scholar 

  38. E. Papaefstathiou, A. Agapiou, S. Giannopoulos, R. Kokkinofta, Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr. (2018). https://doi.org/10.1002/fsn3.776

    Article  PubMed  PubMed Central  Google Scholar 

  39. H. Fidan, N. Petkova, T. Sapoundzhieva, E. Isik Abanoz, Carbohydrate content in Bulgarian and Turkish carob pods and their products. CBU International Conference on Innovations in Science and Education, March 23–25, Prague, Czech Republic, p. 796–802 (2016) https://doi.org/10.12955/cbup.v4.855

  40. A.K. Yousif, H.M. Alghzawi, Processing and characterization of carob powder. Food Chem. 69, 283–287 (2000). https://doi.org/10.1016/S0308-8146(99)00265-4

    Article  CAS  Google Scholar 

  41. R.W. Owen, R. Haubner, W.E. Hull, G. Erben, B. Spiegelhalder, H. Bartsch, B. Haber, Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem. Toxicol. 41, 1727–1738 (2003). https://doi.org/10.1016/s0278-6915(03)00200-x

    Article  CAS  PubMed  Google Scholar 

  42. A.M. Requejo Marco, B. Ruiz-Rosa Calvo De Mora, C. Sanjuan Diaz, Natural carob fibre and a procedure for its production. European Patent Application Publication Number: EP0616780 (1996)

  43. V. Goulas, E. Georgiou, Utilization of carob fruit as sources of phenolic compounds with antioxidant potential: Extraction optimization and application in food models. Foods 9(1), 20 (2020). https://doi.org/10.3390/foods9010020

    Article  CAS  Google Scholar 

  44. D.P. Makris, P. Kefalas, Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol. Biotechnol. 42(2), 105–108 (2004)

    CAS  Google Scholar 

  45. J. Wang, A. Martínez-Hernández, S. de Lamo-Castellví, M.P. Romero, W. Kaade, M. Ferrando, C. Güell, Low-energy membrane-based processes to concentrate and encapsulate polyphenols from carob pulp. J. Food Eng. 281, 109996 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109996

    Article  CAS  Google Scholar 

  46. R. Rodríguez-Solana, J.M. Salgado, E. Pérez-Santín, A. Romano, Effect of carob variety and roasting on the antioxidant capacity, and the phenolic and furanic contents of carob liquors. J. Sci. Food Agric. 99, 2697–2707 (2019). https://doi.org/10.1002/jsfa.9437

    Article  CAS  PubMed  Google Scholar 

  47. I. Boublenza, H.A. Lazouni, L. Ghaffari, K. Ruiz, A.S. Fabiano-Tixier, F. Chemat, Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.). J. Food Qual. (2017). https://doi.org/10.1155/2017/4193672

    Article  Google Scholar 

  48. H. Fidan, S. Stankov, N. Petkova, Z. Petkova, A. Iliev, M. Stoyanova, T. Ivanova, N. Zhelyazkov, S. Ibrahim, A. Stoyanova, S. Ercisli, Evaluation of chemical composition, antioxidant potentialand functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 57(7), 2404–2413 (2020). https://doi.org/10.1007/s13197-020-04274-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. F. Saci, M.B. Bey, H. Louaileche, L. Gali, C. Bensouici, Changes in anticholinesterase, antioxidant activities and related bioactive compounds of carob pulp (Ceratonia siliqua L.) during ripening stages. J. Food Meas. Charact. 14, 937–945 (2020). https://doi.org/10.1007/s11694-019-00344-9

    Article  Google Scholar 

  50. D.V. Cepo, A. Mornar, B. Nigovic, D. Kremer, D. Radanovic, I.V. Dragojevic, Optimization of roasting conditions as a useful approach for increasing antioxidant activity of carob powder. LWT Food Sci. Technol. 58, 578–586 (2014). https://doi.org/10.1016/j.lwt.2014.04.004

    Article  CAS  Google Scholar 

  51. H. Sahin, A. Topuz, M. Pischetsrieder, F. Ozdemir, Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur. Food Res. Technol. 230, 155–161 (2009). https://doi.org/10.1007/s00217-009-1152-7

    Article  CAS  Google Scholar 

  52. K.F. Tiefenbacher, The technology of wafers and waffles I: operational aspects, 1st edn. (Academic Press, 2017), p. 712

    Google Scholar 

  53. J.V. Popov-Raljić, J.S. Mastilović, J.G. Laličić-Petronijević, Z.S. Kevrešan, M.A. Demin, Sensory and color properties of dietary cookies with different fiber sources during 180 days of storage. Hemijska Industrija 67(1), 123–134 (2013). https://doi.org/10.2298/HEMIND120327047P

    Article  Google Scholar 

  54. E.E. Babiker, M.M. Ozcan, K. Ghafoor, F.A. Juhaimi, I.A.M. Ahmed, I.A. Almusallam, Physico-chemical and bioactive properties, fatty acids, phenolic compounds, mineral contents, and sensory properties of cookies enriched with carob flour. J. Food Process. Preserv. 44(10), e14745 (2020). https://doi.org/10.1111/jfpp.14745

    Article  CAS  Google Scholar 

  55. A. Jain, B.K. Pradhan, P. Mahapatra, S.S. Ray, S. Chakravarty, K. Pal, Development of a low-cost food color monitoring system. Color Res. Appl. 46(2), 430–445 (2021). https://doi.org/10.1002/col.22577

    Article  Google Scholar 

  56. C. Arribas, B. Cabellos, C. Cuadrado, E. Guillamon, M.M. Pedrosa, Cooking effect on the bioactive compounds, texture, and color properties of cold-extruded rice/bean-based pasta supplemented with whole carob fruit. Foods 9, 415 (2020). https://doi.org/10.3390/foods9040415

    Article  CAS  PubMed Central  Google Scholar 

  57. A. Caglar, N. Erol, M.S. Elgün, Effect of carob flour substitution on chemical and functional properties of Tarhana. J. Food Process Preserv. 37(5), 670–675 (2013). https://doi.org/10.1111/j.1745-4549.2012.00708.x

    Article  CAS  Google Scholar 

  58. S. Aydin, Y. Ozdemir, Development and characterization of carob flour based functional spread for increasing use as nutritious snack for children. Hindawi J. Food Qual. (2017). https://doi.org/10.1155/2017/5028150

    Article  Google Scholar 

  59. S. Cakir, Production and quality determination of carob pestil (leather). MSc thesis, Inonu University Graduate School of Natural and Applied Sciences Department of Food Engineering, Malatya, Turkey, p. 63 (2009)

  60. R. Różyło, D. Dziki, U. Gawlik-Dziki, B. Biernacka, M. Wójcik, A. Ziemichód, Physical and antioxidant properties of gluten-free bread enriched with carob fibre. Int. Agrophys. 31, 411–418 (2017). https://doi.org/10.1515/intag-2016-0060

    Article  CAS  Google Scholar 

  61. D. Granato, J.C.B. Ribeiro, I.A. Castro, M.L. Masson, Sensory evaluation and physicochemical optimisation of soybased desserts using response surface methodology. Food Chem. 121(3), 899–906 (2010). https://doi.org/10.1016/j.foodchem.2010.01.014

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Toros University and Mersin University. The authors are also grateful to Atışeri (Mersin, Turkey) for supplying carob pulp molasses.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YÖ; Data curation: YÖ, ÇÖ; Formal Analysis: ÇÖ, SI; Funding acquisition: YÖ, SI; Investigation: ÇÖ; Methodology: YÖ, SI; Project administration: YÖ; Resources: ÇÖ, SI; Software: ÇÖ; Supervision: YÖ; Validation: SI; Visualization: YÖ, ÇÖ; Writing – original draft: YÖ, ÇÖ, SI; Writing – review & editing: YÖ, ÇÖ.

Corresponding author

Correspondence to Cagla Ozbek.

Ethics declarations

Conflict of interest

The authors disclose no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, Y., Ozbek, C. & Ilhan, S. Ice cream cone enriched with carob molasses pulp. Food Measure 16, 3782–3791 (2022). https://doi.org/10.1007/s11694-022-01489-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01489-w

Keywords

Navigation