Skip to main content
Log in

Effect of roasting process on phenolic, antioxidant and browning properties of carob powder

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Roasted carob powder was obtained using different time–temperature combinations and some quality characteristics such as total phenolic content (TPC), total antioxidant activity (TAA), browning index (BI) at 420 nm, UV absorbance (UV-A) at 294 nm, and pH has been investigated. Both the roasting temperature and time significantly (P < 0.01) affected the quality characteristics of the product. However, the roasting time was found to be a critical factor in determining the overall quality of the product. While the TPC, TAA, BI and UV-A values of the samples increased with the increasing roasting temperature and time, the pH of the samples decreased gradually. The quality characteristics of the carob powders changed markedly in between 20 and 60 min of roasting which indicates that the heat-induced reactions accelerate particularly in that period of roasting. The correlations between all these chemical properties of carob powder were found to be significant (P < 0.0001) during roasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Battle I, Tous J (1997) Carob Tree (Ceratonia siliqua L.). International Plant Genetic Resources Institute. Via delle Sette Chiese 142 00145 Rome, Italy

  2. Macleod G, Forcen M (1992) Phytochem 31:3113–3119

    Article  CAS  Google Scholar 

  3. Petit MD, Pinilla M (1995) Lebensm Wiss Technol 28:145–152

    CAS  Google Scholar 

  4. Correia PJ, Martins-Loução MA (2005) Field Crop Res 91:1–6

    Article  Google Scholar 

  5. Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) J Agric Food Chem 50:373–377

    Article  CAS  Google Scholar 

  6. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H (2003) Food Chem Toxicol 41:1727–1738

    Article  CAS  Google Scholar 

  7. Santos M, Rodrigus A, Teixeira JA (2005) Biochem Eng J 25:1–6

    Article  CAS  Google Scholar 

  8. Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) J Agric Food Chem 52:3784–3791

    Article  CAS  Google Scholar 

  9. Avollone R, Plessi M, Baraldi M, Monzani A (1997) J Food Compos Anal 10:166–172

    Article  Google Scholar 

  10. Yousif AK, Alghzawi HM (2000) Food Chem 69:283–287

    Article  CAS  Google Scholar 

  11. Carabasa-Giribert M, Ibarz-Ribas A (2000) J Food Eng 44:181–189

    Article  Google Scholar 

  12. Friedman M (1996) J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  13. Gökmen V, Açar ÖÇ, Köksel H, Acar J (2007) Food Chem 104:1136–1142

    Article  Google Scholar 

  14. Rurian-Henares JA, Morales FJ (2008) J Agric Food Chem 56:2357–2362

    Article  CAS  Google Scholar 

  15. Yılmaz Y, Toledo R (2005) Food Chem 93:273–278

    Article  Google Scholar 

  16. Hegele J, Münch G, Pischetsrieder M (2009) Mol Nutr Food Res 53. doi: 10.1002/mnfr.200800221

  17. Nakamura A, Sasaki F, Watanabe K, Ojima T, Ahn D-H, Saeki H (2006) J Agric Food Chem 54:9529–9534

    Article  CAS  Google Scholar 

  18. Benjakul S, Lertittikul W, Bauer F (2005) Food Chem 93:189–196

    Article  CAS  Google Scholar 

  19. Wagner K-H, Derkits S, Herr M, Schuh W, Elmadfa I (2002) Food Chem 78:375–382

    Article  CAS  Google Scholar 

  20. Hwang J-Y, Shue Y-S, Chang H-M (2001) Food Res Int 34:639–647

    Article  CAS  Google Scholar 

  21. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2001) Trends Food Sci Tech 11:340–346

    Article  Google Scholar 

  22. Nicoli MC, Anese M, Manzocco L, Lerici CR (1997) Lebensm Wiss Technol 30:292–297

    Article  CAS  Google Scholar 

  23. Summa CA, de la Calle B, Brohee M, Stadler RH, Anklam E (2007) Lebensm Wiss Technol 40:1849–1854

    CAS  Google Scholar 

  24. Cämmerer B, Kroh LW (2006) Eur Food Res Technol 223:469–474

    Article  Google Scholar 

  25. Bekedam EK, Schols HA, Caemmerer B, Kroh LW, van Boekel MAJS, Smit G (2008) J Agric Food Chem 56:4597–4604

    Article  Google Scholar 

  26. Krysiak W (2006) J Food Eng 77:449–453

    Article  CAS  Google Scholar 

  27. Kahyaoglu T, Kaya S (2006) J Food Eng 75:167–177

    Article  Google Scholar 

  28. Özdemir M, Devres O (2000) J Food Eng 44:31–38

    Article  Google Scholar 

  29. Wall MM, Gentry TS (2007) Lebensm Wiss Technol 40:587–593

    CAS  Google Scholar 

  30. Loots DT, Van Der Westhuizen FH, Jerling J (2006) J Agric Food Chem 54:1271–1276

    Article  CAS  Google Scholar 

  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  32. Arlorio M, Locatelli M, Travaglia F, Coïsson J-D, Del Grosso E, Minassi A, Appendino G, Martelli A (2008) Food Chem 106:967–975

    Article  CAS  Google Scholar 

  33. Krings U, El-Saharty YS, El-Zeany BA, Pabel B, Berger RG (2000) Food Chem 71:91–95

    Article  CAS  Google Scholar 

  34. Şensoy I, Rosen RT, Ho C-T, Karwe MV (2006) Food Chem 99:388–393

    Article  Google Scholar 

  35. Durmaz G, Alpaslan M (2007) Food Chem 100:1177–1181

    Article  CAS  Google Scholar 

  36. Yen G-C, Hung C-Y (2000) Food Res Int 33:487–492

    Article  CAS  Google Scholar 

  37. Yu J, Ahmedna M, Goktepe I (2005) Food Chem 90:199–206

    Article  CAS  Google Scholar 

  38. Ledl F, Schleicher E (1990) Angew Chem Int Ed 29:565–594

    Article  Google Scholar 

  39. Bekedam EK, Loots MJ, Schols HA, Van Boekel MA, Smit G (2008) J Agric Food Chem 56:7138–7145

    Article  CAS  Google Scholar 

  40. Woffenden H, Ames J, Chandra S (2001) J Agric Food Chem 49:5524–5530

    Article  CAS  Google Scholar 

  41. Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A (2001) J Food Sci 66:926–931

    Article  CAS  Google Scholar 

  42. Phongkanpai V, Benjakul S, Tanaka M (2006) J Food Biochem 30:174–186

    Article  CAS  Google Scholar 

  43. Kitts D, Wu C, Nagasawa T (2006) Mol Nutr Food Res 50:1180–1190

    Article  CAS  Google Scholar 

  44. Eichner K, Karle M (1972) J Agric Food Chem 20:218–223

    Article  CAS  Google Scholar 

  45. Ledl F, Schleicher E (1990) Angew Chem Int Ed Engl 29:565–569

    Article  Google Scholar 

  46. Feldman J, Ryder W, Kung J (1969) J Agric Food Chem 17:733–739

    Article  CAS  Google Scholar 

  47. Smejkal Q, Kurz T, Fiedler T, Kroh L (2007) Int J Food Eng 3:1–18

    Google Scholar 

  48. Davidek T, Robert F, Devaud S, Arce Vera F, Blank I (2006) J Agric Food Chem 54:6677–6684

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Scientific Research Fund of Akdeniz University for a partial financial support and the DAAD (Deutscher Akademischer Austausch Dienst) for a grant to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feramuz Özdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şahin, H., Topuz, A., Pischetsrieder, M. et al. Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230, 155–161 (2009). https://doi.org/10.1007/s00217-009-1152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1152-7

Keywords

Navigation