Skip to main content
Log in

The Effect of Compound Growth on the Microstructure and Properties of Titanium-Steel Clad Plate Subjected to High Temperature Heat Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To study the effect of interfacial reaction phase growth on the properties of titanium-steel clad plate, the rolled titanium-steel clad plate was heat treated at 1000 °C for 1-10 h. Then, the microstructure and reaction phase generation growth mechanism of the composite interface under different holding times were analyzed. And the mechanical properties of the bonding interface of the composite plate were tested by nanoindentation test, hardness test and tensile test. The results showed that when heated at 1000 °C for various holding durations, there was no new alteration in the interface microstructure. TiC, Fe2Ti, and FeTi compounds were generated at the interface bond as the holding duration rises due to the accelerated diffusion of elements at the interface. These compounds accumulated at the interfacial junction with a staggered distribution. According to the diffusion thermodynamics and experimental results, the mechanism of the formation and growth of the compound at the bonding interface was constructed. The reaction phase was not altered by the lengthened holding period, but it did encourage compound development and result in a thicker reaction layer. The tensile strength of the titanium-steel composite plate steadily declined as the thickness of the reaction layer rose, which caused interfacial delamination and a dramatic shift in the tensile curve of the composite plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Dziallach, W. Bleck, and M. Köhler, Roll-Bonded Titanium/Stainless-Steel Couples, Part 2: Mechanical Properties after Different Material-Treatment Routes, Adc. Eng. Mater., 2009, 11(1–2), p 82–87.

    Article  CAS  Google Scholar 

  2. Z. Zhao, J. Tang, H.N. Tariq, H. Liu, H. Liu, Y. Ren, M. Tong, L. Yin, H. Du, J. Wang, and T. Xiong, Effect of Rolling Temperature on Microstructure and Mechanical Properties of Ti/Steel Clad Plates Fabricated by Cold Spraying and Hot-Rolling, Mater. Sci. Eng. A, 2020, 795, p 139982.

    Article  CAS  Google Scholar 

  3. Q. Chu, M. Zhang, J. Li, and C. Yan, Experimental and Numerical Investigation of Microstructure and Mechanical Behavior of Titanium/Steel Interfaces Prepared by Explosive Welding, Mater. Sci. Eng. A, 2017, 689, p 323–331.

    Article  CAS  Google Scholar 

  4. H. Su, X.B. Luo, F. Chai, J.C. Shen, X.J. Sun, and F. Lu, Manufacturing Technology and Application Trends of Titanium Clad Steel Plates, J. Iron Steel Res. Int., 2015, 22(11), p 977–982.

    Article  Google Scholar 

  5. M. Saboktakin, G.R. Razavi, and H. Monajati, The Investigate Metallurgical Properties of Roll Bonding Titanium Clad Steel, Int. J. Appl. Phys. Math., 2011, 1(3), p 177–180.

    Article  CAS  Google Scholar 

  6. M. Ghosh, K. Bhanumurthy, G. Kale, J. Krishnan, and S. Chatterjee, Diffusion Bonding of Titanium to 304 Stainless Steel, J. Nucl. Mater., 2003, 322, p 235–241.

    Article  CAS  Google Scholar 

  7. F.L. Wang, G.M. Sheng, and Y.Q. Deng, Impulse Pressuring Diffusion Bonding of Titanium to 304 Stainless Steel Using Pure Ni Interlayer, Rare Met. Mater. Eng., 2016, 35, p 331–336.

    Article  CAS  Google Scholar 

  8. M.X. Xie, L.J. Zhang, G.F. Zhang, J.X. Zhang, Z.Y. Bi, and P.C. Li, Microstructure and Mechanical Properties of CP-Ti/X65 Bimetallic Sheets Fabricated by explosive Welding and Hot Rolling, Mater. Des., 2015, 87, p 181–219.

    Article  CAS  Google Scholar 

  9. X.Y. Yang, K. Guo, Y.Z. Gao, and Q.F. Wang, Effect of Carbon Content on Interfacial Microstructure and Mechanical Properties of a Vacuum Hot-Compressed Bonding Titanium-Steel Composite, Mater. Sci. Eng. A, 2021, 824, p 141802.

    Article  CAS  Google Scholar 

  10. F. Findik, Recent Developments in Explosive Welding, Mater. Des., 2011, 32, p 1081–1093.

    Article  CAS  Google Scholar 

  11. B.X. Li, Z.J. Chen, W.J. He, P.J. Wang, J.S. Lin, Y. Wang, L. Peng, J. Li, and Q. Liu, Effect of Interlayer Material and Rolling Temperature on Microstructures and Mechanical Properties of Titanium/Steel Clad Plates, Mater. Sci. Eng. A., 2019, 749, p 241–248.

    Article  CAS  Google Scholar 

  12. M. Saboktakin Rizi, H.R. Javadinejad, E. Aghababaei, and M. Ebrahimian, Effect of Intermetallic Compounds on Microstructure and Mechanical Properties of Hot Roll Bonding Titanium to Steel, Trans. Indian Inst. Met., 2018, 71(8), p 1941–1950.

    Article  CAS  Google Scholar 

  13. D.H. Yang, Z.A. Luo, G.M. Xie, and R.J.M.S. Misra, Effect of Interfacial Compounds on Mechanical Properties of Titanium-Steel Vacuum Roll-Cladding Plates, Mater. Sci. Technol., 2018, 34(1–10), p 1700–1709.

    Article  CAS  Google Scholar 

  14. M. Miriyev and N.J.A.M. Sinder, Frage, Thermal Stability and Growth Kinetics of the Interfacial TiC layer in the Ti alloy/Carbon Steel System, Acta Mater., 2014, 75, p 348–355.

    Article  CAS  Google Scholar 

  15. T.N. Prasanthi, C. Sudha Ravikirana et al., Explosive Cladding and Post-Weld Heat Treatment of Mild Steel and Titanium, Mater. Des., 2016, 93, p 180–193.

    Article  CAS  Google Scholar 

  16. G. Zu, X. Sun, and J. Zhang, Interfacial Bonding Mechanism and Mechanical Performance of Ti/Steel Bimetallic Clad Sheet Produced by Explosive Welding and Annealing, Rare Met. Mater. Eng., 2017, 46(4), p 906–911.

    Article  CAS  Google Scholar 

  17. B. Qin, G.M. Sheng, J.W. Huang, B. Zhou, S.Y. Qiu, and C. Li, Phase Transformation Diffusion Bonding of Titanium Alloy with Stainless Steel, Mater. Char., 2006, 56(1), p 32–38.

    Article  CAS  Google Scholar 

  18. X.Y. Chai, T. Pan, and F. Chai, Interlayer Engineering for Titanium Clad Steel by Hot Roll Bonding, J. Iron Steel Res. Int., 2018, 25(7), p 739–745.

    Article  Google Scholar 

  19. S. Mousavi and P.F. Sartangi, Effect of Post-Weld heat Treatment on the Interface Microstructure of Explosively Welded Titanium–Stainless Steel Composite, Mater Sci. Eng. A, 2008, 494(1–2), p 329–336.

    Article  Google Scholar 

  20. C. Yu, Z.C. Qi, and H. Yu, Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate, J. Mater. Eng. Perform., 2018, 27(3), p 1–9.

    Google Scholar 

  21. Z. Zhang, W.M. Jiang, and G.Y. Li, Effect of La on Microstructure, Mechanical Properties and Fracture Behavior of Al/Mg Bimetallic Interface Manufactured by Compound Casting, J. Mater. Sci. Technol., 2022, 105, p 214–225.

    Article  CAS  Google Scholar 

  22. Z. Zhang, W.M. Jiang, and G.Y. Li, Improved Interface Bonding of Al/Mg Bimetal Fabricated by Compound Casting with Nd Addition, Mater. Sci. Eng. A, 2021, 826, p 141998.

    Article  CAS  Google Scholar 

  23. G.Y. Li, W.M. Jiang, and F. Guan, Microstructure, Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite Interlayer, J. Mater. Process. Tech., 2021, 288, p 116874.

    Article  CAS  Google Scholar 

  24. G.Y. Li, W.M. Jiang, and F. Guan, Microstructure Evolution, Mechanical Properties and Fracture Behavior of Al-xSi/AZ91D Bimetallic Composites Prepared by a Compound Casting, J. Magnes. Alloys, 2022 https://doi.org/10.1016/j.jma.2022.08.010

    Article  Google Scholar 

  25. C. Yu, H. Xiao, H. Yu, Z.C. Qi, and C. Xu, Mechanical Properties and Interfacial Structure of Hot-Roll Bonding TA2/Q235B Plate Using DT4 Interlayer, Mater. Sci. Eng. A, 2017, 695, p 120–125.

    Article  CAS  Google Scholar 

  26. D.H. Yang, Z.A. Luo, G.M. Xie, T. Jiang, S. Zhao, and R.D.K. Misra, Interfacial Microstructure and Properties of a Vacuum Roll-Cladding Titanium-Steel Clad Plate with a Nickel Interlayer, Mater. Sci. Eng. A, 2019, 753, p 49–58.

    Article  CAS  Google Scholar 

  27. G.M. Xie, D.H. Yang, Z.A. Luo, M. Li, M.K. Wang, and R. Misra, The Determining role of Nb Interlayer on Interfacial Microstructure and Mechanical Properties of Ti/Steel Clad Plate by Vacuum Rolling Cladding, Mater, 2018, 11(10), p 1983.

    Article  Google Scholar 

  28. Z. Luo, G. Wang, G. Xie, L. Wang, and K. Zhao, Interfacial Microstructure and Properties of a Vacuum hot Roll-Bonded Titanium-Stainless Steel Clad Plate with a Niobium Interlayer, Acta Metall. Sin., 2013, 26(6), p 754–760.

    Article  CAS  Google Scholar 

  29. M.K. Lee, J.G. Lee, Y.H. Choi et al., Interlayer Engineering for Dissimilar Bonding of Titanium to Stainless Steel, Mater Lett., 2010, 64(9), p 1105.

    Article  CAS  Google Scholar 

  30. X.Y. Chai, G. Chen, F. Chai, T. Pan, and C.F. Yang, Hot Roll Bonding Between Commercially Pure Titanium and High-Strength Low-Alloy Steel Using Fe Interlayer, J. Iron Steel Res. Int., 2019, 26(1), p 1126.

    Article  CAS  Google Scholar 

  31. Z.A. Qiang, L.A. Rui, and Z.B. Qiang, Microstructure Characterization and Tensile Shear Failure Mechanism of the Bonding Interface of Explosively Welded Titanium-Steel Composite, Mater Sci. Eng. A, 2021, 820, p 141559.

    Article  Google Scholar 

  32. R. Sun, G.S. Li, and M.Y. Zhang, Evolution and Formation Mechanism of Interface Structure in Rolled Mg-Al Clad Sheet, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07629-z

    Article  Google Scholar 

  33. F.F. Ahmed, S.J. Clark, and L. Chu, Achieving Homogeneity in a High-Fe β-Ti Alloy Laser-Printed from Blended Elemental Powders, Mater. Des., 2021, 210, p 110072.

    Article  CAS  Google Scholar 

  34. X.Y. Pan, J. Jiang, T. Wan, L. Liu, K. Zhang, J. Li, G. Yang, and M. Zhang, Effect of High-Temperature Normalizing Heat Treatment on Interfacial Microstructure and Mechanical Properties of Rolled Titanium Steel Composite Plate, J. Mater. Eng. Perform., 2023, 23, p 1. https://doi.org/10.1007/s11665-023-08326-1

    Article  CAS  Google Scholar 

  35. T. Momono, T. Enjo, and K. Ikeuchi, Effects of Carbon Content on the Diffusion Bonding of Iron and Steel to Titanium, ISIJ Int., 1990, 30(11), p 978–984.

    Article  CAS  Google Scholar 

  36. G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, 47(1), p 558–561.

    Article  CAS  Google Scholar 

  37. O.S. Lee, Microstructure and Hardness Improvement of TiC/Stainless Steel Surface Composites Fabricated by High-Energy Electron Beam Irradiation, Mater Sci. Eng. A, 2002, 323(1–2), p 251–259.

    Article  Google Scholar 

  38. C.J. Wu, G.L. Chen, and W.J. Qiang, Metallic materials, Metallurgical Industry Press, Beijing, 2009, p 9–10

    Google Scholar 

  39. N. Zhang, W. Wang, X. Cao, and J. Wu, The Effect of Annealing on the Interface Microstructure and Mechanical Characteristics of AZ31B/AA6061 Composite Plates Fabricated by Explosive Welding, Mater. Des., 2015, 65, p 1100–1109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the Anhui Key Laboratory of metallurgical engineering and comprehensive utilization of resources open fund (Grant Number SKF22-04), Scientific research project of Natural Science Foundation of Anhui University (Grant Number KJ2020A0272) and the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (Grant Number 2022RALKFKT011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingya Zhang.

Ethics declarations

Conflict of interest

All participating authors declare that they have no conflict of interest in this work. We once again solemnly declare that there is no conflict of interest with the submitted work, such as commercial interest or ancillary interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Jiang, J., Xu, S. et al. The Effect of Compound Growth on the Microstructure and Properties of Titanium-Steel Clad Plate Subjected to High Temperature Heat Treatment. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08687-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08687-7

Keywords

Navigation