Skip to main content
Log in

Effect of High-Temperature Normalizing Heat Treatment on Interfacial Microstructure and Mechanical Properties of Rolled Titanium Steel Composite Plate

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To study the effect of high-temperature environment on the properties of titanium steel composite plate, the normalized heat treatment of rolled titanium steel composite plate was carried out at 800-1000 °C for 1 h in this work. Then, the microstructure and element diffusion of the bonding interface were studied by various microscopic instruments. Furthermore, the mechanical properties of the bonding interface of the composite plate were tested by hardness test and shear tensile test. The results demonstrated that the normalizing process greatly enhances the interatomic diffusion and microstructure transformation at the bonding interface. With the increase in temperature, a new microstructure appeared on the titanium side of the bonding interface, and the average grain size of the steel side increased. TiC was formed at the interface at 900 °C and partially dissolved at 950 °C. After the partial melting of TiC in the interface reaction layer, the element diffusion accelerated and the content of Ti/Fe series intermetallic compounds increased, which improved the microhardness at the interface and significantly reduced the interfacial shear strength. The morphology of the peeled surface of titanium steel was characterized by microcracks, cleavage surfaces and pits, mainly brittle fracture, and some areas were ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Su, X.B. Luo, F. Chai, J.C. Shen, X.J. Sun, and F. Lu, Manufacturing Technology and Application Trends of Titanium Clad Steel Plates, J. Iron Steel Res. Int., 2015, 22(11), p 977–982.

    Article  Google Scholar 

  2. M. Saboktakin, G.R. Razavi, and H. Monajati, The Investigate Metallurgical Properties of Roll Bondingtitanium Clad Steel, Int. J. Appl. Phys. Math., 2011, 1(3), p 177–180.

    Article  CAS  Google Scholar 

  3. M. Ghosh, K. Bhanumurthy, G. Kale, J. Krishnan, and S. Chatterjee, Diffusion Bonding of Titanium to 304 Stainless Steel, J. Nucl. Mater., 2003, 322, p 235–241.

    Article  CAS  Google Scholar 

  4. F.L. Wang, G.M. Sheng, and Y.Q. Deng, Impulse Pressuring Diffusion Bonding of Titanium to 304 Stainless Steel Using Pure Ni Interlayer, Rare Met., 2016, 35, p 331–336.

    Article  CAS  Google Scholar 

  5. G. Zu, X. Sun, and J. Zhang, Interfacial Bonding Mechanism and Mechanical Performance of Ti/Steel Bimetallic Clad Sheet Produced by Explosive Welding and Annealing, Rare Met. Mater. Eng., 2017, 46(4), p 906–911.

    Article  CAS  Google Scholar 

  6. B. Qin, G.M. Sheng, J.W. Huang, B. Zhou, S.Y. Qiu, and C. Li, Phase Transformation Diffusion Bonding of Titanium Alloy with Stainless Steel, Mater. Charact., 2006, 56(1), p 32–38.

    Article  CAS  Google Scholar 

  7. M.X. Xie, L.J. Zhang, G.F. Zhang, J.X. Zhang, Z.Y. Bi, and P.C. Li, Microstructure and Mechanical Properties of CP-Ti/X65 Bimetallic Sheets Fabricated by Explosive Welding and Hot Rolling, Mater. Des., 2015, 87, p 181–219.

    Article  CAS  Google Scholar 

  8. F. Findik, Recent Developments in Explosive Welding, Mater. Des., 2011, 32, p 1081–1093.

    Article  CAS  Google Scholar 

  9. B.X. Li, Z.J. Chen, W.J. He, P.J. Wang, J.S. Lin, Y. Wang, L. Peng, J. Li, and Q. Liu, Effect of Interlayer Material and Rolling Temperature on Microstructures and Mechanical Properties of Titanium/Steel Clad Plates, Mater. Sci. Eng. A, 2019, 749, p 241–248.

    Article  CAS  Google Scholar 

  10. S. Dziallach, W. Bleck, and M. Köhler, Roll-Bonded Titanium/Stainless-Steel Couples, Part 2: Mechanical Properties after Different Material-Treatment Routes, Adv. Eng. Mater., 2009, 11(1–2), p 82–87.

    Article  CAS  Google Scholar 

  11. Z. Zhao, J. Tang, N.H. Tariq, H. Liu, H. Liu, Y. Ren, M. Tong, L. Yin, H. Du, J. Wang, and T. Xiong, Effect of Rolling Temperature on Microstructure and Mechanical Properties of Ti/Steel Clad Plates Fabricated by Cold Spraying and Hot-Rolling, Mater. Sci. Eng. A, 2020, 795, p 139982.

    Article  CAS  Google Scholar 

  12. Q. Chu, M. Zhang, J. Li, and C. Yan, Experimental and Numerical Investigation of Microstructure and Mechanical Behavior of Titanium/Steel Interfaces Prepared by Explosive Welding, Mater. Sci. Eng. A, 2017, 689, p 323–331.

    Article  CAS  Google Scholar 

  13. K. Liu, P. Chen, J. Feng, C. Ran, Y. Wang, Q. Zhou, and L. Zhu, Fabrication and Characterization of the Mo/Cu Bimetal with Thick Mo Layer and High Interfacial Strength, Int. J. Refract. Met. Hard Mater., 2021, 94, p 105383.

    Article  CAS  Google Scholar 

  14. M. Saboktakin Rizi, H.R. Javadinejad, E. Aghababaei, and M. Ebrahimian, Effect of Intermetallic Compounds on Microstructure and Mechanical Properties of Hot Roll Bonding Titanium to Steel, Trans. Indian Inst. Met., 2018, 71(8), p 1941–1950.

    Article  CAS  Google Scholar 

  15. D.H. Yang, Z.A. Luo, G.M. Xie, and R.J.M.S. Misra, Effect of Interfacial Compounds on Mechanical Properties of Titanium–Steel Vacuum Roll-Cladding Plates, Mater. Sci. Technol., 2018, 34(1–10), p 1700–1709.

    Article  CAS  Google Scholar 

  16. Miriyev, M. Sinder, and N.J.A.M. Frage, Thermal Stability and Growth Kinetics of the Interfacial TiC Layer in the Ti Alloy/Carbon Steel System, Acta Mater., 2014, 75, p 348–355.

    Article  CAS  Google Scholar 

  17. T.N. Prasanthi, C. Sudha, Ravikirana et al., Explosive Cladding and Post-weld Heat Treatment of Mild Steel and Titanium, Mater. Des., 2016, 93, p 180–193.

    Article  CAS  Google Scholar 

  18. X.Y. Chai, T. Pan, and F. Chai, Interlayer Engineering for Titanium Clad Steel by Hot Roll Bonding, J. Iron Steel Res. Int., 2018, 25(7), p 739–745.

    Article  Google Scholar 

  19. S. Mousavi and P.F. Sartangi, Effect of Post-weld Heat Treatment on the Interface Microstructure of Explosively Welded Titanium–Stainless Steel Composite, Mater. Sci. Eng. A, 2008, 494(1–2), p 329–336.

    Article  Google Scholar 

  20. X. Yang, C. Feng, C. Jie, X.N. Chen, and Q. Xiong, Effects of High-Temperature Annealing on Microstructure and Mechanical Property of SiO2f/SiO2 Composites, Vacuum, 2017, 144, p 1–7.

    Article  CAS  Google Scholar 

  21. W. Lin, L. Gang, and S. Jun, Effects of La2O3 and Annealing Temperature on Grain Size and Mechanical Properties of Mo Alloys, Mater. Res. Express, 2017, 4(11), p 11651.

    Google Scholar 

  22. C. Yu, Z.C. Qi, and H. Yu, Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate, J. Mater. Eng. Perform., 2018, 27(3), p 1–9.

    Google Scholar 

  23. Z.A. Qiang, L.A. Rui, and Z.B. Qiang, Microstructure Characterization and Tensile Shear Failure Mechanism of the Bonding Interface of Explosively Welded Titanium–Steel Composite, Mater Sci. Eng. A, 2021, 820, p 141559.

    Article  Google Scholar 

  24. R. Sun, G.S. Li, and M.Y. Zhang, Evolution and Formation Mechanism of Interface Structure in Rolled Mg-Al Clad Sheet, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07629-z

    Article  Google Scholar 

  25. C. Yu et al., Effect of Carbon Content on the Microstructure and Bonding Properties of Hot-Rolling Pure Titanium Clad Carbon Steel Plates, Mater. Sci. Eng. A, 2021, 820, p 141572.

    Article  CAS  Google Scholar 

  26. F.F. Ahmed, S.J. Clark, and L. Chu, Achieving Homogeneity in a High-Fe β-Ti Alloy Laser-Printed from Blended Elemental Powders, Mater. Des., 2021, 210, p 110072.

    Article  CAS  Google Scholar 

  27. H.T. Jiang, X.Q. Yan, and J.X. Liu, Effect of Heat Treatment on Microstructure and Mechanical Property of Ti–Steel Explosive-Rolling Clad Plate, T. Nonferr. Metal. Soc., 2014, 24(3), p 697–704.

    Article  CAS  Google Scholar 

  28. T. Momono, T. Enjo, and K. Ikeuchi, Effects of Carbon Content on the Diffusion Bonding of Iron and Steel to Titanium, ISIJ Int., 1990, 30(11), p 978–984.

    Article  CAS  Google Scholar 

  29. O.S. Lee, Microstructure and Hardness Improvement of TiC/Stainless Steel Surface Composites Fabricated by High-Energy Electron Beam Irradiation, Mater. Sci. Eng. A, 2002, 323(1–2), p 251–259.

    Article  Google Scholar 

  30. C.J. Wu, G.L. Chen, and W.J. Qiang, Metallic Materials, Metallurgical Industry Press, Beijing, 2009, p 9–10

    Google Scholar 

  31. H.B. Xia, L.Q. Li, C.W. Tan, and J. Yang, In Situ SEM Study on Tensile Fractured Behavior of Al/Steel Laser Welding-Brazing interface, Mater. Des., 2022, 224, p 111320.

    Article  CAS  Google Scholar 

  32. B.X. Li, Z.J. Chen, W.J. He, and T. Zhou, Effect of Titanium Grain Orientation on the Growth of Compounds at Diffusion Bonded Titanium/Steel Interfaces, Mater. Charact., 2019, 148, p 243–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the Anhui Key Laboratory of metallurgical engineering and comprehensive utilization of resources open fund (Grant Number SKF22-04), Scientific research project of Natural Science Foundation of Anhui University (Grant Number KJ2020A0272) and the Open Research Fund of State Key Laboratory of Refractories and Metallurgy (Grant Number 202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingya Zhang.

Ethics declarations

Conflict of interest

All participating authors declare that they have no conflict of interest in this work. We once again solemnly declare that there is no conflict of interest with the submitted work, such as commercial interest or ancillary interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Jiang, J., Wan, T. et al. Effect of High-Temperature Normalizing Heat Treatment on Interfacial Microstructure and Mechanical Properties of Rolled Titanium Steel Composite Plate. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08326-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08326-1

Keywords

Navigation