Skip to main content
Log in

Anomalous Growth of the Alloy Whiskers and Hillocks in a Sn-Pb Coating on Al Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microalloying of elemental Pb is recognized in the electronics industry as the most effective and reliable method for mitigating whisker growth. However, in this study, Pb was not found to mitigate whisker growth in a Sn coating on an Al substrate. Pb addition resulted in the rapid growth of alloy whiskers and hillocks consisting of Sn phases and Pb phases on Sn-xPb coatings. The grain size was refined by increasing the Pb content, and the addition of a minor quantity of Pb changed the grain structure from a monolayer columnar structure to a multilayer equiaxed structure. Increasing the quantity of added Pb led to a higher whisker density on the coatings. The thermal stress in the coatings was heterogeneously distributed during aging. The Sn-Pb eutectic phase in the coatings was under high compressive stress and was therefore prone to whisker growth. Alloy whiskers and hillocks started to grow from the independent Pb phases during the initial aging stage. A long aging period resulted in the formation of massive Pb phases at the roots of the alloy hillocks due to Ostwald ripening. Some alloying elements are recommended that could be useful for mitigating whisker growth.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. B.Z. Lee and D.N. Lee, Spontaneous growth mechanism of tin whiskers. Acta Mater. 46, 3701–3714 (1998). https://doi.org/10.1016/S1359-6454(98)00045-7.

    Article  CAS  Google Scholar 

  2. M. Sun, X. Long, M. Dong, Y. Xia, F. Hu, A. Hu, and M. Li, Mitigation of tin whisker growth by inserting Ni nanocones. Mater. Charact. 134, 354–361 (2017). https://doi.org/10.1016/j.matchar.2017.11.002.

    Article  CAS  Google Scholar 

  3. B. Illés, A. Skwarek, R. Bátorfi, J. Ratajczak, A. Czerwinski, O. Krammer, B. Medgyes, B. Horváth, and T. Hurtony, Whisker growth from vacuum evaporated submicron Sn thin films. Surf. Coat. Technol. 311, 216–222 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.011.

    Article  CAS  Google Scholar 

  4. NASA. Whisker Failures. http://nepp.nasa.gov/whisker/failures/index.htm

  5. P.G. Zhang, Y.M. Zhang, and Z.M. Sun, Spontaneous growth of metal whiskers on surfaces of solids: a review. J. Mater. Sci. Technol. 31, 675–698 (2015). https://doi.org/10.1016/j.jmst.2015.04.001.

    Article  CAS  Google Scholar 

  6. Q.L. Lin, C.S. Ye, and R. Sui, Wetting of Ni-based amorphous and crystalline alloys by Sn and Sn-based solders. Microelectron. Reliab. 111, 113722 (2020). https://doi.org/10.1016/j.microrel.2020.113722.

    Article  CAS  Google Scholar 

  7. X. Zhang, C. Yang, M. Sun, A. Hu, M. Li, L. Gao, T. Hang, and H. Ling, Inhibition of tin whisker by electroplating ultra-thin Co-W amorphous barrier layer. Mater. Charact. 162, 110221 (2020). https://doi.org/10.1016/j.matchar.2020.110221.

    Article  CAS  Google Scholar 

  8. P. Sarobol, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, Defect Morphology and Texture in Sn, Sn-Cu, and Sn-Cu-Pb Electroplated Films. IEEE Trans. Electron. Packag. Manuf. 33, 159–164 (2010). https://doi.org/10.1109/TEPM.2010.2046172.

    Article  CAS  Google Scholar 

  9. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits. Acta Mater. 53, 5033–5050 (2005). https://doi.org/10.1016/j.actamat.2005.07.016.

    Article  CAS  Google Scholar 

  10. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Whisker formation in Sn and Pb-Sn coatings: role of intermetallic growth, stress evolution, and plastic deformation processes. Appl. Phys. Lett. 92, 171901 (2008). https://doi.org/10.1063/1.2912528.

    Article  CAS  Google Scholar 

  11. K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions. Phys. Rev. B 49, 2030–2034 (1994). https://doi.org/10.1103/PhysRevB.49.2030.

    Article  CAS  Google Scholar 

  12. M. Sun, M. Dong, D. Wang, H. Ling, A. Hu, and M. Li, Growth behavior of tin whisker on SnAg microbump under compressive stress. Scripta Mater. 147, 114–118 (2018). https://doi.org/10.1016/j.scriptamat.2018.01.014.

    Article  CAS  Google Scholar 

  13. M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Local, submicron, strain gradients as the cause of Sn whisker growth. Appl. Phys. Lett. 94, 221901 (2009). https://doi.org/10.1063/1.3147864.

    Article  CAS  Google Scholar 

  14. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hügel, and A. Seekamp, Driving force for Sn whisker growth in the system Cu-Sn. Appl. Phys. Lett. 93, 011906 (2008). https://doi.org/10.1063/1.2953973.

    Article  CAS  Google Scholar 

  15. B. Illés, O. Krammer, T. Hurtony, K. Dušek, D. Bušek, and A. Skwarek, Kinetics of Sn whisker growth from Sn thin-flms on Cu substrate. J. Mater. Sci.: Mater Electron. 31, 16314–16323 (2020). https://doi.org/10.1007/s10854-020-04180-2.

    Article  CAS  Google Scholar 

  16. R. Sui, F.X. Li, W.J. Ci, and Q.L. Lin, Wetting of Cu and Cu-Sn IMCs by Sn-Bi Alloys over Wide Composition at 350°C. J. Electron. Mater. 48, 4660–4668 (2019). https://doi.org/10.1007/s11664-019-07251-1.

    Article  CAS  Google Scholar 

  17. B. Illés, A. Skwarek, J. Ratajczak, K. Dušek, and D. Bušek, The influence of the crystallographic structure of the intermetallic grains on tin whisker growth. J. Alloy. Compd. 785, 774–780 (2019). https://doi.org/10.1016/j.jallcom.2019.01.247.

    Article  CAS  Google Scholar 

  18. F. Pei, A.F. Bower, and E. Chason, Quantifying the rates of Sn whisker growth and plastic strain relaxation using thermally-induced stress. J. Electron. Mater. 45, 21–29 (2016). https://doi.org/10.1007/s11664-015-3965-4.

    Article  CAS  Google Scholar 

  19. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, and L. Nguyen, Tin whiskers studied by focused ion beam imaging and transmission electron microscopy. J. Appl. Phys. 92, 64–69 (2002). https://doi.org/10.1063/1.1481202.

    Article  CAS  Google Scholar 

  20. E. Chason, F. Pei, C.L. Briant, H. Kesari, and A.F. Bower, Significance of nucleation kinetics in Sn Whisker formation. J. Electron. Mater. 43, 4435–4441 (2014). https://doi.org/10.1007/s11664-014-3379-8.

    Article  CAS  Google Scholar 

  21. K. Suganuma, A. Baated, K. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, Sn whisker growth during thermal cycling. Acta Mater. 59, 7255–7267 (2011). https://doi.org/10.1016/j.actamat.2011.08.017.

    Article  CAS  Google Scholar 

  22. P. Sarobol, J.E. Blendell, and C.A. Handwerker, Whisker and hillock growth via coupled localized Coble creep, grain boundary sliding, and shear induced grain boundary migration. Acta Mater. 61, 1991–2003 (2013). https://doi.org/10.1016/j.actamat.2012.12.019.

    Article  CAS  Google Scholar 

  23. S. Tian, R. Cao, J. Zhou, F. Xue, Y. Liu, P. Zhang, and Z. Sun, A comparative study on the growth behaviors of Sn whiskers and hillocks in a Sn-Al alloy coating under different environments. J. Alloy. Compd. 853, 157101 (2021). https://doi.org/10.1016/j.jallcom.2020.157101.

    Article  CAS  Google Scholar 

  24. S. Tian, Y. Liu, P. Zhang, J. Zhou, F. Xue, and Z. Sun, Tin whiskers prefer to grow from the [001] grains in a tin coating on aluminum substrate. J. Mater. Sci. Technol. 80, 191–202 (2021). https://doi.org/10.1016/j.jmst.2021.01.002.

    Article  CAS  Google Scholar 

  25. S. Tian, Y. Liu, Q. Ma, P. Zhang, J. Zhou, F. Xue, and Z. Sun, Intermetallics-induced directional growth of Sn whiskers in Sn-35Ag coating on Al substrate. Appl. Surf. Sci. 539, 148135 (2021). https://doi.org/10.1016/j.apsusc.2020.148135.

    Article  CAS  Google Scholar 

  26. A. Baated, K. Kim, and K. Suganuma, Whisker growth from an electroplated zinc coating. J. Mater. Res. 25, 2175–2182 (2010). https://doi.org/10.1557/jmr.2010.0273.

    Article  CAS  Google Scholar 

  27. V.V. Volobuev, P. Dziawa, A.N. Stetsenko, E.N. Zubarev, B.A. Savitskiy, T.A. Samburskaya, A. Reszka, T. Story, and A.Y. Sipatov, The mechanism of Bi nanowire growth from Bi/Co immiscible composite thin films. J. Nanosci. Nanotechnol. 12, 8624–8629 (2012). https://doi.org/10.1166/jnn.2012.6835.

    Article  CAS  Google Scholar 

  28. Y. Zhang, P. Zhang, W. He, and Z. Sun, Tin whisker growth on immiscible Al-Sn alloy. J. Mater. Sci.: Mater. Electron. 31, 1328–1334 (2020). https://doi.org/10.1007/s10854-019-02646-6.

    Article  CAS  Google Scholar 

  29. W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book, 8th ed., (Oxford: Oxford University Press, 2004).

    Google Scholar 

  30. Y. Yao, J. Zhou, F. Xue, and X. Chen, Interfacial structure and growth kinetics of intermetallic compounds between Sn-3.5Ag solder and Al substrate during solder process. J. Alloy. Compd. 682, 627–633 (2016). https://doi.org/10.1016/j.jallcom.2016.04.263.

    Article  CAS  Google Scholar 

  31. A. Frye, G.T. Galyon, and L. Palmer, Crystallographic texture and Whiskers in Electrodeposited Tin films. IEEE Trans. Electron. Packag. Manuf. 30, 2–10 (2007). https://doi.org/10.1109/TEPM.2007.891763.

    Article  CAS  Google Scholar 

  32. W. Chen, P. Sarobol, J.R. Holaday, C.A. Handwerker, and J.E. Blendell, Effect of crystallographic texture, anisotropic elasticity, and thermal expansion on whisker formation in β-Sn thin films. J. Mater. Res. 29, 197–206 (2014). https://doi.org/10.1557/jmr.2013.378.

    Article  CAS  Google Scholar 

  33. R.R. Shen, V. Ström, and P. Efsing, Spatial correlation between local misorientations and nanoindentation hardness in nickel-base alloy 690. Mater. Sci. Eng. A 674, 171–177 (2016). https://doi.org/10.1016/j.msea.2016.07.123.

    Article  CAS  Google Scholar 

  34. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004.

    Article  CAS  Google Scholar 

  35. P.J. Chiang, J.Y. Wu, H.Y. Yu, and C.R. Kao, Creep Behaviors Along Characteristic Crystal Orientations of Sn and Sn-1.8Ag by Using Nanoindentation. JOM 71, 2998–3011 (2019). https://doi.org/10.1007/s11837-019-03557-x.

    Article  CAS  Google Scholar 

  36. K.S. Kumar, L. Reinbold, A.F. Bower, and E. Chason, Plastic deformation processes in Cu/Sn bimetallic films. J. Mater. Res. 23, 2916–2934 (2008). https://doi.org/10.1557/JMR.2008.0351.

    Article  CAS  Google Scholar 

  37. E.J. Buchovecky, N. Du, and A.F. Bower, A model of Sn whisker growth by coupled plastic flow and grain boundary diffusion. Appl. Phys. Lett. 94, 191904 (2009). https://doi.org/10.1063/1.3136865.

    Article  CAS  Google Scholar 

  38. M.J. Bozack, S.K. Snipes, and G.N. Flowers, Methods for fast, reliable growth of Sn whiskers. Surf. Sci. 652, 355–366 (2016). https://doi.org/10.1016/j.susc.2016.01.010.

    Article  CAS  Google Scholar 

  39. T. Philippe, and P.W. Voorhees, Ostwald ripening in multicomponent alloys. Acta Mater. 61, 4237–4244 (2013). https://doi.org/10.1016/j.actamat.2013.03.049.

    Article  CAS  Google Scholar 

  40. K. Kim and P.W. Voorhees, Ostwald ripening of spheroidal particles in multicomponent alloys. Acta Mater. 152, 327–337 (2018). https://doi.org/10.1016/j.actamat.2018.04.041.

    Article  CAS  Google Scholar 

  41. I.M. Lifshitz, and V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961). https://doi.org/10.1016/0022-3697(61)90054-3.

    Article  Google Scholar 

  42. D. Gupta, K. Vieregge, and W. Gust, Interface diffusion in eutectic Pb-Sn solder. Acta Mater. 47, 5–12 (1998). https://doi.org/10.1016/S1359-6454(98)00348-6.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of National Natural Science Foundation of China (No. 51731004) and the Fundamental Research Funds for the Central Universities (3212002002C3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Tian or ZhengMing Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Yao, X., Wang, J. et al. Anomalous Growth of the Alloy Whiskers and Hillocks in a Sn-Pb Coating on Al Substrate. J. Electron. Mater. 52, 1977–1989 (2023). https://doi.org/10.1007/s11664-022-10160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10160-5

Keywords

Navigation