Skip to main content
Log in

Structural, Elastic, Electronic, Magnetic and Optical Properties of Spin Gapless Semiconducting Heusler Alloy Ti2FeSb Using First-Principles Calculations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Density functional theory has been used to study the structural, elastic, electronic, magnetic and optical properties of Ti2FeSb Heusler alloy using generalised gradient approximation implemented through the WIEN2k code. The cubic structure of Ti2FeSb is mechanically stable in the F-43m space group and shows elastic anisotropic properties with ductile nature. Ti2FeSb shows spin gapless semiconductor behaviour along with an indirect energy band gap (EG) of 0.10 eV along the Г-Χ in majority spin (γ-spin) band above the Fermi energy level (EF) and 0.90 eV in the minority spin (δ-spin) band at EF. The total magnetic moment is 3 µB at optimized lattice constant (ao) 6.32 Å and follows the Slater–Pauling curve for inverse Heusler alloys. Robustness of this material with respect to change in the value of ao is evident in the constancy of magnetic moment along with retention of the half metallic nature within a lattice variation ±4% from equilibrium value of ao. Reflectivity, optical conductivity, dielectric function, absorption coefficient and energy loss have also been investigated as a function of incident energy for this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.Y. Gao and K.L. Yao, Appl. Phys. Lett. 103, 232409 (2013). https://doi.org/10.1063/1.4840318.

    Article  CAS  Google Scholar 

  2. G. Gao, G. Ding, J. Li, K. Yao, M. Wu, and M. Qian, Nanoscale 8, 8986 (2016). https://doi.org/10.1039/C6NR01333C.

    Article  CAS  Google Scholar 

  3. S. Skaftouros, K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, Phys. Rev. B 87, 024420 (2013). https://doi.org/10.1103/PhysRevB.87.024420.

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  5. A. Jakobsson, P. Mavropoulos, E. Şaşıoğlu, S. Blügel, M. Ležaić, B. Sanyal, and I. Galanakis, Phys. Rev. B 91, 174439 (2015). https://doi.org/10.1103/PhysRevB.91.174439.

    Article  CAS  Google Scholar 

  6. X.L. Wang, Phys. Rev. Lett. 100, 156404 (2008). https://doi.org/10.1103/PhysRevLett.100.156404.

    Article  CAS  Google Scholar 

  7. X. Wang, Z. Cheng, J. Wang, X.L. Wang, and G. Liu, J. Mater. Chem. C 4, 7176 (2016). https://doi.org/10.1039/C6TC01343K.

    Article  CAS  Google Scholar 

  8. L. Bainsla, A.I. Mallick, M.M. Raja, A.K. Nigam, B.C.S. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, and K. Hono, Phys. Rev. B 91, 104408 (2015). https://doi.org/10.1103/PhysRevB.91.104408.

    Article  CAS  Google Scholar 

  9. L. Bainsla, A.I. Mallick, M.M. Raja, A.A. Coelho, A.K. Nigam, D.D. Johnson, A. Alam, and K.G. Suresh, Phys. Rev. B 92, 045201 (2015). https://doi.org/10.1103/PhysRevB.92.045201.

    Article  CAS  Google Scholar 

  10. S. Ouardi, G.H. Fecher, C. Felser, and J. Kübler, Phys. Rev. Lett. 110, 100401 (2013). https://doi.org/10.1103/PhysRevLett.110.100401.

    Article  CAS  Google Scholar 

  11. G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, and G.H. Wu, Europhys. Lett. 102, 17007 (2013). https://doi.org/10.1209/0295-5075/102/17007.

    Article  CAS  Google Scholar 

  12. Q. Gao, H.H. Xie, L. Li, G. Lei, J.B. Deng, and X.R. Hu, Superlattices Microstruct. 85, 536 (2015). https://doi.org/10.1016/j.spmi.2015.05.049.

    Article  CAS  Google Scholar 

  13. X. Yang, X. Wu, B. Wu, Y. Feng, P. Li, and H. Huang, First-principles calculated spin-gapless semiconducting behavior in quaternary VCoHfGa and CrFeHfGa Heusler compounds Mater. Sci. Eng. B 209, 45 (2016). https://doi.org/10.1016/j.mseb.2015.12.008.

    Article  CAS  Google Scholar 

  14. Y. Li, Z. Zhou, P. Shen, and Z. Chen, ACS Nano 3, 1952 (2009). https://doi.org/10.1021/nn9003428.

    Article  CAS  Google Scholar 

  15. K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, J. Appl. Phys. 113, 193903 (2013). https://doi.org/10.1063/1.4805063.

    Article  CAS  Google Scholar 

  16. X. Wang, C. Zhenxiang, Y. Hongkuan, and K. Rabah, J. Mater. Chem. C 5, 11559 (2017). https://doi.org/10.1039/c7tc03909c.

    Article  CAS  Google Scholar 

  17. M. Liping, and S. Yongfan, J. Magn. Magn. Mater. 369, 205 (2014). https://doi.org/10.1016/j.jmmm.2014.06.043.

    Article  CAS  Google Scholar 

  18. R. Jain, V.K. Jain, N. Lakshmi, A.R. Chandra, K. Venugopalan, V. Jain, First principle calculation of half metallicity in Ti2MnSb Heusler alloy. AIP Conference Proceedings(2017, May), 1832(1), p. 090007.https://doi.org/10.1063/1.5028926

  19. X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, and X.R. Hu, Intermetallics 29, 86 (2012). https://doi.org/10.1016/j.intermet.2012.05.002.

    Article  CAS  Google Scholar 

  20. A. Birsan, and P. Palade, Intermetallics 36, 86 (2013). https://doi.org/10.1016/j.intermet.2013.01.005.

    Article  CAS  Google Scholar 

  21. S. Qi, J. Shen, and C.H. Zhang, Mater. Chem. Phys. 164, 177 (2015). https://doi.org/10.1016/j.matchemphys.2015.08.040.

    Article  CAS  Google Scholar 

  22. M. Drief, Y. Guermit, N. Benkhettou, D. Rached, H. Rached, and T. Lantri, J. Supercond. Nov. Magn. 31, 1059 (2018). https://doi.org/10.1007/s10948-017-4286-z.

    Article  CAS  Google Scholar 

  23. Y. Yan, J. Yang, N. Zhao, G. Yao, X. Fu, Y. Zhang, and W. Cui, J. Supercond. Nov. Magn. 33, 2551 (2020). https://doi.org/10.1007/s10948-020-05520-3.

    Article  CAS  Google Scholar 

  24. N. Rahman, M. Husain, J. Yang, G. Murtaza, M. Sajjad, A. Habib, A. Karim, M. Zulfiqar, U. Haq, A. Rauf, M. Nisar, and M.Y. Khan, J. Supercond. Nov. Magn. 33, 3915 (2020). https://doi.org/10.1007/s10948-020-05652-6.

    Article  CAS  Google Scholar 

  25. L. Zhang, X.T. Wang, H. Rozale, J.W. Lu, and L.Y. Wang, J. Supercond. Nov. Magn. 29, 349 (2016). https://doi.org/10.1007/s10948-015-3258-4.

    Article  CAS  Google Scholar 

  26. F. Taşkın, M. Atiş, O. Canko, S. Kervan, and N. Kervan, J. Magn. Magn. Mater. 426, 473 (2017). https://doi.org/10.1016/j.jmmm.2016.06.071.

    Article  CAS  Google Scholar 

  27. S.M. Azar, A.A. Mousa, and J.M. Khalifeh, Intermetallics 85, 197 (2017).

    Article  CAS  Google Scholar 

  28. J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phy. Rev. B 98, 094410 (2018). https://doi.org/10.1103/PhysRevB.98.094410.

    Article  CAS  Google Scholar 

  29. Z. Sun, S. Li, R. Ahuja, and J.M. Schneider, Solid State Commun. 129, 589 (2004). https://doi.org/10.1016/j.ssc.2003.12.008.

    Article  CAS  Google Scholar 

  30. C. Jasiukiewicz, and V. Karpus, Solid State Commun. 128, 167 (2003). https://doi.org/10.1016/j.ssc.2003.08.008.

    Article  CAS  Google Scholar 

  31. P. Wachter, M. Filzmoser, and J. Rebizant, Phys. B Condens. Matter 293, 199 (2001). https://doi.org/10.1016/S0921-4526(00)00575-5.

    Article  CAS  Google Scholar 

  32. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Phys. Rev. B 41, 10311 (1990). https://doi.org/10.1103/PhysRevB.41.10311.

    Article  CAS  Google Scholar 

  33. M.J. Mehl, Phys. Rev. B 47, 2493 (1993). https://doi.org/10.1103/PhysRevB.47.2493.

    Article  CAS  Google Scholar 

  34. R. Hill, Proc. Phys. Soc. Sect. A65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307.

    Article  Google Scholar 

  35. D.G. Pettifor, Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345.

    Article  CAS  Google Scholar 

  36. S.F. Pugh, Lond Edinb Dublin Philos Mag J Sci 45, 823 (1954). https://doi.org/10.1080/14786440808520496.

    Article  CAS  Google Scholar 

  37. I. Frantsevich, F. Voronov, S. Bokuta, and I. Frantsevich, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka, 1983), pp. 60–180.

    Google Scholar 

  38. R. Jain, V.K. Jain, A.R. Chandra, V. Jain, and N. Lakshmi, J. Supercond. Nov. Magn. 31, 2399 (2018). https://doi.org/10.1007/s10948-017-4460-3.

    Article  CAS  Google Scholar 

  39. V.K. Jain, N. Lakshmi, R. Jain, and A.R. Chandra, J. Supercond. Nov. Magn. 32, 739 (2019). https://doi.org/10.1007/s10948-018-4751-3.

    Article  CAS  Google Scholar 

  40. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, an Augmented-Plane-Wave Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz. Techn, Wien, Austria (2001). ISBN 3-9501031-1-2.

  41. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  42. P. Blaha, K. Schwarz, P. Sorantin, and S.B. Tricky, Comput. Phys. Commun. 59, 399 (1990). https://doi.org/10.1016/0010-4655(90)90187-6.

    Article  CAS  Google Scholar 

  43. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244.

    Article  CAS  Google Scholar 

  44. H. Han, T. Feng, C. Zhang, Z. Feng, M. Li, and K.L. Yao, Phys. B: Condens. Matter 539, 61 (2018). https://doi.org/10.1016/j.physb.2018.04.006.

    Article  CAS  Google Scholar 

  45. S. Yousuf, and D.C. Gupta, J. Alloy. Compd. 735, 1245 (2018). https://doi.org/10.1016/j.physb.2018.04.006.

    Article  CAS  Google Scholar 

  46. V.K. Jain, N. Lakshmi, V. Jain, and K. Venugopalan, AIP Conf Proc 1665, 130032 (2015). https://doi.org/10.1063/1.4918180.

    Article  Google Scholar 

  47. S. Katsuyama, and T. Kobayashi, Mater. Sci. Eng. B 166, 99 (2010). https://doi.org/10.1016/j.mseb.2009.10.021.

    Article  CAS  Google Scholar 

  48. A.R. Chandra, V. Jain, V.K. Jain, R. Jain, N. Lakshmi, and K. Venugopalan, AIP Conf. Proc. 1832, 0130019 (2017). https://doi.org/10.1063/1.4980739.

    Article  CAS  Google Scholar 

  49. V.K. Jain, V. Jain, N. Lakshmi, and K. Venugopalan, Quantum Matter. 5, 319 (2016). https://doi.org/10.1063/1.4980739.

    Article  CAS  Google Scholar 

  50. V.K. Jain, N. Lakshmi, V. Jain, and K. Venugopalan, AIP Conf. Proc. 1942, 090010 (2018). https://doi.org/10.1063/1.5028925.

    Article  CAS  Google Scholar 

  51. A.R. Chandra, V. Jain, N. Lakshmi, V.K. Jain, K. Soni, and R. Jain, J. Alloy. Compd. 748, 298 (2018). https://doi.org/10.1016/j.jallcom.2018.03.143.

    Article  CAS  Google Scholar 

  52. S. Wang, and J. Yu, J. Supercond. Nov. Magn. 31, 2789 (2018). https://doi.org/10.1007/s10948-017-4532-4.

    Article  CAS  Google Scholar 

  53. S. Wang, T.H. Yu, Y.Y. Hong, and W. Jun, Chin. Phys. B 23, 17203 (2014). https://doi.org/10.1088/1674-1056/23/1/017203.

    Article  CAS  Google Scholar 

  54. E.I. Shreder, A.D. Svyazhin, and K.A. Belozerova, Phys. Met. Metallogr. 114, 904 (2013). https://doi.org/10.1134/S0031918X13110124.

    Article  Google Scholar 

  55. L.H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B 77, 245203 (2008). https://doi.org/10.1103/PhysRevB.77.245203.

    Article  CAS  Google Scholar 

  56. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-30614-3.

    Article  CAS  Google Scholar 

  57. Y. Luo, S. Wang, H. Shu, J.P. Chou, K. Ren, J. Yu, and M. Sun, Semicond. Sci. Technol. 35, 125008 (2020). https://doi.org/10.1088/1361-6641/abba40.

    Article  CAS  Google Scholar 

  58. S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018). https://doi.org/10.1039/c8cp00808f.

    Article  CAS  Google Scholar 

  59. K. Hoang, RRL) Rapid Res. Lett. 9, 722 (2015). https://doi.org/10.1002/pssr.201510269.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the computational facility at the Department of Physics, Mohanlal Sukhadia University, Udaipur, under UGC-DSA, DST-FIST and RUSA programs. Dr. Vivek Kumar Jain is thankful to the Management of the Seth Gyaniram Banshidhar Podar College, Nawalgarh, Jhunjhunu, Rajasthan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar Jain.

Ethics declarations

We declare that there is no personal conflict of interest such as financial interest, personal activity or government body under contract.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V.K., Lakshmi, N., Jain, R. et al. Structural, Elastic, Electronic, Magnetic and Optical Properties of Spin Gapless Semiconducting Heusler Alloy Ti2FeSb Using First-Principles Calculations. J. Electron. Mater. 50, 5857–5867 (2021). https://doi.org/10.1007/s11664-021-09115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09115-z

Keywords

Navigation