Skip to main content
Log in

Magnetic Behaviors of 3d Transition Metal-Doped Silicane: a First-Principle Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We perform a first-principle computation on the magnetic properties of 3d transition metal (TM)-doped silicane. All the substituted systems are energetically stable. Robust half-metallic properties are found in Ti-, V- and Mn-substituted silicane. At the dopant concentration of 12.5%, we evaluate that the Curie temperature of Ti- and Mn-substituted silicane is at 340 and 666 K respectively in the mean-field approximation. Consequently, room-temperature ferromagnetism is easily achievable in Ti- and Mn-substituted silicane. Our work demonstrates potential application of Ti and Mn-substituted silicane for room-temperature spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005)

    Article  ADS  Google Scholar 

  3. Sun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y., Zhang, Y.: First-principles study of the alkali earth metal atoms adsorption on graphene. Appl. Surf. Sci. 356, 668–673 (2015)

    Article  ADS  Google Scholar 

  4. Sun, M., Chou, J.-P., Ren, Q., Zhao, Y., Yu, J., Tang, W.: Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett. 110(17), 173105 (2017)

    Article  ADS  Google Scholar 

  5. Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two- and onedimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102(23), 236804 (2009)

    Article  ADS  Google Scholar 

  6. Wang, S.K., Wang, J, Chan. K.S.: Multiple topological interface states in silicene. New J. Phys. 16(4), 45015 (2014)

    Article  Google Scholar 

  7. Sun, M., Ren, Q., Wang, S., Yu, J., Tang, W.: Electronic properties of Janus silicene: new direct band gap semiconductors. J. Phys. D: Appl. Phys. 49(44), 445305 (2016)

    Article  ADS  Google Scholar 

  8. Tang, W., Sun, M., Ren, Q., Zhang, Y., Wang, S., Yu, J.: First principles study of silicene symmetrically and asymmetrically functionalized with halogen atoms. RSC Adv. 6(98), 95846–95854 (2016)

    Article  Google Scholar 

  9. Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108(19), 196802 (2012)

    Article  ADS  Google Scholar 

  10. Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014)

    Article  ADS  Google Scholar 

  11. Ding, Y., Wang, Y.: Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a firstprinciples study. J. Phys. Chem. C 119(19), 10610–10622 (2015)

    Article  Google Scholar 

  12. Sun, M., Wang, S., Yu, J., Tang, W.: Hydrogenated and halogenated blue phosphorene as Dirac materials: a first principles study. Appl. Surf. Sci. 392, 46–50 (2017)

    Article  ADS  Google Scholar 

  13. Sun, M., Chou, J.-P., Yu, J., Tang, W.: Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19(26), 17324–17330 (2017)

    Article  Google Scholar 

  14. Wang, Y., Ding, Y.: The electronic structures of group-V-group-IV hetero-bilayer structures: a first-principles study. Phys. Chem. Chem. Phys. 17(41), 27769–27776 (2015)

    Article  Google Scholar 

  15. Tang, W., Sun, M., Ren, Q., Wang, S., Yu, J.: Halogenated arsenenes as Dirac materials. Appl. Surf. Sci. 376, 286–289 (2016)

    Article  ADS  Google Scholar 

  16. Kan, E., Hu, W., Xiao, C., Lu, R., Deng, K., Yang, J., Su, H.: Half-metallicity in organic single porous sheets. J. Am. Chem. Soc. 134(13), 5718–5721 (2012)

    Article  Google Scholar 

  17. Zhou, J., Wang, Q., Sun, Q., Chen, X.S., Kawazoe, Y., Jena, P.: Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9(11), 3867–3870 (2009)

    Article  ADS  Google Scholar 

  18. Kan, E.J., Xiang, H.J., Wu, F., Tian, C., Lee, C., Yang, J.L., Whangbo, M.H.: Prediction for room-temperature half-metallic ferromagnetism in the half-fluorinated single layers of BN and ZnO. Appl. Phys. Lett. 97(12), 122503 (2010)

    Article  ADS  Google Scholar 

  19. Chen, W., Li, Y., Yu, G., Li, C.-Z., Zhang, S.B., Zhou, Z., Chen, Z.: Hydrogenation: a simple approach to realize semiconductor−halfmetal −metal transition in boron nitride nanoribbons. J. Am. Chem. Soc. 132(5), 1699–1705 (2010)

    Article  Google Scholar 

  20. Son, Y. -W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)

    Article  ADS  Google Scholar 

  21. Hod, O., Scuseria, G.E.: Half-metallic zigzag carbon nanotube dots. ACS Nano 2(11), 2243–2249 (2008)

    Article  Google Scholar 

  22. Hod, O., Barone, V., Peralta, J.E., Scuseria, G.E.: Enhanced halfmetallicity in edgeoxidized zigzag graphene nanoribbons. Nano Lett. 7(8), 2295–2299 (2007)

    Article  ADS  Google Scholar 

  23. Kan, E.-j., Li, Z., Yang, J., Hou, J.G.: Half-metallicity in edgemodified zigzag graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4224–4225 (2008)

    Article  Google Scholar 

  24. Wu, M., Wu, X., Gao, Y., Zeng, X.C.: Materials design of half-metallic graphene and graphene nanoribbons. Appl. Phys. Lett. 94(22), 223111 (2009)

    Article  ADS  Google Scholar 

  25. Kan, E., Wu, F., Xiang, H., Yang, J., Whangbo, M.-H.: Half-metallic Dirac point in B-edge hydrogenated BN nanoribbons. J. Phys. Chem. C 115(35), 17252–17254 (2011)

    Article  Google Scholar 

  26. Cao, C., Wu, M., Jiang, J., Cheng, H.-P.: Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81(20), 205424 (2010)

    Article  ADS  Google Scholar 

  27. Zhu, Z., Chen, W., Sun, Q., Jia, Y.: Half-metal behaviour mediated by self-doping of topological line defect combining with adsorption of 3d transition-metal atomic chains in graphene. J. Phys. D: Appl. Phys. 47(5), 55303 (2014)

    Article  ADS  Google Scholar 

  28. Chen, Q., Ouyang, Y., Yuan, S., Li, R., Wang, J.: Uniformly wetting deposition of Co atoms on MoS2 monolayer: a promising twodimensional robust halfmetallic ferromagnet. ACS Appl. Mater. Inter. 6(19), 16835–16840 (2014)

    Article  Google Scholar 

  29. Wang, S.K., Wang, J.: Valley precession in graphene superlattices. Phys. Rev. B 92(7), 75419 (2015)

    Article  ADS  Google Scholar 

  30. Sun, M., Tang, W., Ren, Q., Wang, S.-k., Yu, J., Du, Y.: A first-principles study of light non-metallic atom substituted blue phosphorene. Appl. Surf. Sci. 356, 110–114 (2015)

    Article  ADS  Google Scholar 

  31. Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W.: Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation. Solid State Commun. 242, 36–40 (2016)

    Article  ADS  Google Scholar 

  32. Santos, E.J.G., Ayuela, A., Sánchez-Portal, D.: First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New J. Phys. 12(5), 53012 (2010)

    Article  Google Scholar 

  33. Sun, M., Ren, Q., Zhao, Y., Chou, J.-P., Yu, J., Tang, W.: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study. Carbon 120, 265–273 (2017)

    Article  Google Scholar 

  34. Feng, N., Mi, W., Cheng, Y., Guo, Z., Schwingenschlögl, U., Bai, H.: First principles prediction of the magnetic properties of Fe-X 6 (X = S, C, N, O, F) doped monolayer MoS2. Sci. Rep. 4, 3987 (2014)

    Article  Google Scholar 

  35. Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., Tang, W.: Magnetism in transition-metal-doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016)

    Article  Google Scholar 

  36. Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W: Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016)

    Article  ADS  Google Scholar 

  37. Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B., Schwingenschlögl, U.: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys. Rev. B 87(10), 100401 (2013)

    Article  ADS  Google Scholar 

  38. Sun, M., Wang, S., Du, Y., Yu, J., Tang, W.: Transition metal doped arsenene: a first-principles study. Appl. Surf. Sci. 389, 594–600 (2016)

    Article  ADS  Google Scholar 

  39. Li, Y., Zhou, Z., Shen, P., Chen, Z.: Spin gapless semiconductor−metal −halfmetal properties in nitrogendoped zigzag graphene nanoribbons. ACS Nano 3(7), 1952–1958 (2009)

    Article  Google Scholar 

  40. Yang, L., Mi, W., Wang, X.: Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J. Alloy. Compd. 662, 528–533 (2016)

    Article  Google Scholar 

  41. Sun, M., Tang, W., Ren, Q., Zhao, Y., Wang, S., Yu, J., Du, Y., Hao, Y.: Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: a first-principles study. Physica E: Low-dimens. Syst. Nanostruct. 80, 142–148 (2016)

    Article  ADS  Google Scholar 

  42. Lew Yan Voon, L.C., Sandberg, E., Aga, R.S., Farajian, A.A.: Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 97(16), 163114 (2010)

    Article  ADS  Google Scholar 

  43. Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ev, V.V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98(22), 223107 (2011)

    Article  ADS  Google Scholar 

  44. Ding, Y., Wang, Y.: Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 100(8), 83102 (2012)

    Article  MathSciNet  Google Scholar 

  45. Wang, W., Olovsson, W., Uhrberg, R.I.G.: Band structure of hydrogenated silicene on Ag(111): evidence for half-silicane. Phys. Rev. B 93(8), 81406 (2016)

    Article  ADS  Google Scholar 

  46. Restrepo, O.D., Mishra, R., Goldberger, J.E., Windl, W.: Tunable gaps and enhanced mobilities in strain-engineered silicane. J. Appl. Phys. 115(3), 33711 (2014)

    Article  Google Scholar 

  47. Low, K.L., Huang, W., Yeo, Y.C., Liang, G.: Ballistic transport performance of silicane and germanane transistors. IEEE T. Electron Dev. 61(5), 1590–1598 (2014)

    Article  ADS  Google Scholar 

  48. Shu, H., Wang, S., Li, Y., Yip, J., Wang, J.: Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study. J. Chem. Phys. 141(6), 64707 (2014)

    Article  Google Scholar 

  49. Wang, J., Li, J., Li, S.-S., Liu, Y.: Hydrogen storage by metalized silicene and silicane. J. Appl. Phys. 114(12), 124309 (2013)

    Article  ADS  Google Scholar 

  50. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)

    Article  ADS  Google Scholar 

  51. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  52. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    Article  ADS  Google Scholar 

  53. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  ADS  Google Scholar 

  54. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  55. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), 1396 (1997)

    Article  ADS  Google Scholar 

  56. Pumera, M., Wong, C.H.A.: Graphane and hydrogenated graphene. Chem. Soc. Rev. 42(14), 5987–5995 (2013)

    Article  Google Scholar 

  57. Peng, Q., De, S.: Elastic limit of silicane. Nanoscale 6(20), 12071–12079 (2014)

    Article  ADS  Google Scholar 

  58. Wei, W., Dai, Y., Huang, B., Jacob, T.: Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 15(22), 8789–8794 (2013)

    Article  Google Scholar 

  59. Rupp, C.J., Chakraborty, S., Ahuja, R., Baierle, R.J.: The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. Phys. Chem. Chem. Phys. 17(34), 22210–22216 (2015)

    Article  Google Scholar 

  60. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  61. Yang, C. -K.: Graphane with defect or transition-metal impurity. Carbon 48(13), 3901–3905 (2010)

    Article  Google Scholar 

  62. Kittel, C.: Introduction to solid state physics, 8th edn. Wiley, New York (2014)

  63. Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W., Zhang, X.X.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12(1), 141–144 (2012)

    Article  ADS  Google Scholar 

  64. Rodríguez-Manzo, J.A., Cretu, O., Banhart, F.: Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 4(6), 3422–3428 (2010)

    Article  Google Scholar 

  65. Robertson, A.W., Montanari, B., He, K., Kim, J., Allen, C.S., Wu, Y.A., Olivier, J., Neethling, J., Harrison, N., Kirkland, A.I., Warner, J.H.: Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13(4), 1468–1475 (2013)

    Article  ADS  Google Scholar 

  66. He, Z., He, K., Robertson, A.W., Kirkland, A.I., Kim, D., Ihm, J., Yoon, E., Lee, G.-D., Warner, J.H.: Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14(7), 3766–3772 (2014)

    Article  ADS  Google Scholar 

  67. Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82(2), 1633–1690 (2010)

    Article  ADS  Google Scholar 

  68. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M.: Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism. Phys. Rev. Lett. 102(12), 126807 (2009)

    Article  ADS  Google Scholar 

  69. Momma, K., Izumi, F.: VESTA 3 For three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44(6), 1272–1276 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Figures 15 and 6 were generated using the VESTA program [69].

Funding

This study was funded by the National Science Foundation for Young Scientists of China (grant number 11704165), the Science Foundation of Guizhou Science and Technology Department (grant number QKHJZ[2015]2150), the Science Foundation of Guizhou Provincial Education Department (grant number QJHKYZ[2016]092), as well as the Science Foundation of Jinling Institute of Technology (grant number 40620064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sake Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yu, J. Magnetic Behaviors of 3d Transition Metal-Doped Silicane: a First-Principle Study. J Supercond Nov Magn 31, 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4532-4

Keywords

Navigation