Skip to main content
Log in

Multi-component Alloying Effects on the Stability and Mechanical Properties of Nb and Nb–Si Alloys: A First-Principles Study

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Niobium–silicon (Nb–Si)-based superalloys have attracted attention as potential super high-temperatures materials for hot-end components of next-generation high-thrust-to-weight aero-engines due to their high melting points, excellent high-temperature strength, and low densities. The multi-component alloying strategy was often adopted but required expensive experiments, and previous calculations mainly studied the single-component alloying effects for efficiency. This work focused on the multi-component alloying effects on the stability and mechanical properties of Nb and Nb–Si alloys. The first-principles density functional calculations were performed to study the preference of phase and site occupations of 14 alloying elements, including main group elements: B, Al, Si, and transition metal elements: 3d (Ti, V, Cr, Fe, Co, Ni), 4d (Y, Zr, Nb, Mo), and 5d (Hf) in Nb and α-Nb5Si3, respectively. The 3059 multi-component configurations up to quaternary systems, including 315 Nb and 2744 α-Nb5Si3 models, respectively, were studied considering both single-site and double-site substitutions. The single-site substitution energy calculations indicate that Si, Al, Ni, Mo, and Co were single-site Nb phase stabilizers while Ti, Zr, B, and Hf alone stabilized α-Nb5Si3 phase. The synergetic effects of the double-site substitution elements caused Ti, Fe, Zr, Hf, and V becoming the additional Nb phase stabilizers as well as V as α-Nb5Si3 phase stabilizer. Moreover, we calculated the elastic constants and mechanical properties of the 33 most stable Nb alloys. The comprehensive evaluation on the stability and mechanical properties indicated that the overall performance decreased in the order of Mo, Si, Co, and Ni as the leading substitution elements in the 2nd nearest neighbor substitution pairs. The medium-strength and high-plasticity systems had the best overall mechanical performance with SiFe, SiMo, SiCr, AlFe, and NbSi substitutions. Finally, we proposed a “Stability–Plasticity–Strength” (SPS) strategy for computational alloy design of multi-component Nb–Si alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.H. Perepezko: Science, 2009, vol. 326, pp. 1068–69. https://doi.org/10.1126/science.1179327.

    Article  CAS  Google Scholar 

  2. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II, Wiley, New York, 1987.

    Google Scholar 

  3. T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15. https://doi.org/10.1038/nmat4709.

    Article  CAS  Google Scholar 

  4. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.-C. Zhao: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2043–52. https://doi.org/10.1007/s11661-003-0269-8.

    Article  CAS  Google Scholar 

  5. K. Guan, L. Jia, B. Kong, S. Yuan, and H. Zhang: Mater. Sci. Eng. A, 2016, vol. 663, pp. 98–107. https://doi.org/10.1016/j.msea.2016.03.110.

    Article  CAS  Google Scholar 

  6. N. Zou, H.-J. Lu, and X.-G. Lu: J. Alloys Compd., 2019, vol. 803, pp. 684–88. https://doi.org/10.1016/j.jallcom.2019.06.293.

    Article  CAS  Google Scholar 

  7. Z.-H. Liu, Y.-X. Feng, and J.-X. Shang: Appl. Surf. Sci., 2016, vol. 370, pp. 19–24. https://doi.org/10.1016/j.apsusc.2016.02.097.

    Article  CAS  Google Scholar 

  8. S. Zhang, W. Liu, and J. Sha: Prog. Nat. Sci. Mater. Int., 2018, vol. 28, pp. 626–34. https://doi.org/10.1016/j.pnsc.2018.09.001.

    Article  CAS  Google Scholar 

  9. Y. Kang, F. Guo, and M. Li: Mater. Sci. Eng. A, 2019, vol. 760, pp. 118–24. https://doi.org/10.1016/j.msea.2019.05.117.

    Article  CAS  Google Scholar 

  10. X. Ren, W. Liu, H. Ren, Y. Jing, W. Mao, and H. Xiong: J. Mater. Sci. Technol., 2020, vol. 58, pp. 95–99. https://doi.org/10.1016/j.jmst.2020.03.047.

    Article  CAS  Google Scholar 

  11. S.-Y. Liu, J.-X. Shang, F.-H. Wang, S. Liu, Y. Zhang, D. Li, D. Shields, W. Xue, Y. Liu, H. Dang, and S. Wang: J. Chem. Phys., 2013, vol. 138, p. 014708. https://doi.org/10.1063/1.4773447.

    Article  CAS  Google Scholar 

  12. W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu, and Z.-K. Liu: Intermetallics, 2014, vol. 46, pp. 72–79. https://doi.org/10.1016/j.intermet.2013.10.027.

    Article  CAS  Google Scholar 

  13. R. Ma and X. Guo: J. Alloys Compd., 2020, vol. 845, p. 156254. https://doi.org/10.1016/j.jallcom.2020.156254.

    Article  CAS  Google Scholar 

  14. Y. Li, X. Lin, Y. Hu, X. Gao, J. Yu, M. Qian, H. Dong, and W. Huang: Corros. Sci., 2020, vol. 173, p. 108757. https://doi.org/10.1016/j.corsci.2020.108757.

    Article  CAS  Google Scholar 

  15. J. Shu, Z. Dong, C. Zheng, A. Sun, S. Yang, T. Han, Y. Liu, Z. Wang, S. Wang, and Y. Liu: Corros. Sci., 2022, vol. 204, p. 110383. https://doi.org/10.1016/j.corsci.2022.110383.

    Article  CAS  Google Scholar 

  16. S. Zhang and X. Guo: Intermetallics, 2015, vol. 57, pp. 83–92. https://doi.org/10.1016/j.intermet.2014.10.007.

    Article  CAS  Google Scholar 

  17. Z. Li and L.M. Peng: Acta Mater., 2007, vol. 55, pp. 6573–85. https://doi.org/10.1016/j.actamat.2007.08.012.

    Article  CAS  Google Scholar 

  18. Y. Kang, Y. Han, S. Qu, and J. Song: Chin. J. Aeronaut., 2009, vol. 22, pp. 206–10. https://doi.org/10.1016/S1000-9361(08)60088-6.

    Article  Google Scholar 

  19. Q. Huang, Y. Kang, J. Song, S. Qu, Y. Han, and X. Guo: Met. Mater. Int., 2014, vol. 20, pp. 475–81. https://doi.org/10.1007/s12540-014-3010-9.

    Article  CAS  Google Scholar 

  20. J. Geng, P. Tsakiropoulos, and G. Shao: Intermetallics, 2007, vol. 15, pp. 69–76. https://doi.org/10.1016/j.intermet.2006.03.001.

    Article  CAS  Google Scholar 

  21. V.M. Chumarev, L.I. Leont’ev, LYu. Udoeva, N.I. Sel’menskikh, R.I. Gulyaeva, S.V. Zhidovinova, and A.V. Larionov: Russ. Metall., 2014, vol. 2014, pp. 688–96. https://doi.org/10.1134/S0036029514090055.

    Article  Google Scholar 

  22. S. Shi, L. Zhu, H. Zhang, and Z. Sun: J. Alloys Compd., 2016, vol. 689, pp. 296–301. https://doi.org/10.1016/j.jallcom.2016.07.317.

    Article  CAS  Google Scholar 

  23. Y. Chen, J.-X. Shang, and Y. Zhang: J. Phys. Condens. Matter, 2007, vol. 19, p. 016215. https://doi.org/10.1088/0953-8984/19/1/016215.

    Article  CAS  Google Scholar 

  24. S. Shi, L. Zhu, Z. Hu, Z. Sun, and R. Ahuja: Acta Mater., 2018, vol. 144, pp. 853–61. https://doi.org/10.1016/j.actamat.2017.11.029.

    Article  CAS  Google Scholar 

  25. F. Shen, L. Yu, T. Fu, Y. Zhang, and N. Akhtar: Appl. Phys. A, 2021. https://doi.org/10.1007/s00339-021-05013-7.

    Article  Google Scholar 

  26. Y. Chen, J.-X. Shang, and Y. Zhang: Phys. Rev. B, 2007, vol. 76, p. 184204. https://doi.org/10.1103/PhysRevB.76.184204.

    Article  CAS  Google Scholar 

  27. S. Shi, L. Zhu, H. Zhang, and Z. Sun: J. Alloys Compd., 2017, vol. 711, pp. 637–42. https://doi.org/10.1016/j.jallcom.2017.03.358.

    Article  CAS  Google Scholar 

  28. A. Landa, P. Söderlind, A.V. Ruban, O.E. Peil, and L. Vitos: Phys. Rev. Lett., 2009, vol. 103, p. 235501. https://doi.org/10.1103/PhysRevLett.103.235501.

    Article  CAS  Google Scholar 

  29. J. Sun, W. Du, B. Xiao, Y. Wu, Y. Liu, and T. Zhang: Sci. China Technol. Sci., 2021, vol. 64, pp. 1276–84. https://doi.org/10.1007/s11431-020-1740-5.

    Article  CAS  Google Scholar 

  30. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmüller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  33. G. Kresse, J. Furthmüller, and J. Hafner: Phys. Rev. B, 1994, vol. 50, pp. 13181–85. https://doi.org/10.1103/PhysRevB.50.13181.

    Article  CAS  Google Scholar 

  34. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  35. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  36. V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng: Comput. Phys. Commun., 2021, vol. 267, p. 108033.

    Article  CAS  Google Scholar 

  37. E. Blokhin and P. Villars: Handbook of Materials Modeling, Springer, Cham, 2018.

    Google Scholar 

  38. R.L. Barns: J. Appl. Phys., 1968, vol. 39, pp. 4044–45. https://doi.org/10.1063/1.1656912.

    Article  CAS  Google Scholar 

  39. National Bureau of Standards (U.S.): Monograph No. 25, U.S. GPO, Washington, DC, 1978, p. 44.

    Google Scholar 

  40. P. Zhang and X. Guo: Corros. Sci., 2013, vol. 71, pp. 10–19. https://doi.org/10.1016/j.corsci.2013.01.010.

    Article  CAS  Google Scholar 

  41. Y. Yan, H. Ding, Y. Kang, and J. Song: Mater. Des., 2014, vol. 55, pp. 450–55. https://doi.org/10.1016/j.matdes.2013.10.017.

    Article  CAS  Google Scholar 

  42. J.L. Yu and K.F. Zhang: Scripta Mater., 2008, vol. 59, pp. 714–17. https://doi.org/10.1016/j.scriptamat.2008.05.035.

    Article  CAS  Google Scholar 

  43. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 28, pp. 646–53. https://doi.org/10.1557/mrs2003.192.

    Article  CAS  Google Scholar 

  44. J. Guo, B. Xiao, Y. Li, D. Zhai, Y. Tang, W. Du, and Y. Liu: Comput. Mater. Sci., 2021, vol. 200, p. 110787. https://doi.org/10.1016/j.commatsci.2021.110787.

    Article  CAS  Google Scholar 

  45. A.V. Ruban and H.L. Skriver: Phys. Rev. B, 1997, vol. 55, pp. 856–74. https://doi.org/10.1103/PhysRevB.55.856.

    Article  CAS  Google Scholar 

  46. J. Chen, Y. Tang, F. Liu, J. Shu, Y. Liu, Z. Dong, and Y. Liu: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 270–83. https://doi.org/10.1007/s11661-020-06080-w.

    Article  CAS  Google Scholar 

  47. S. Shi, L. Zhu, L. Jia, H. Zhang, and Z. Sun: Comput. Mater. Sci., 2015, vol. 108, pp. 121–27. https://doi.org/10.1016/j.commatsci.2015.06.019.

    Article  CAS  Google Scholar 

  48. Z.-H. Liu and J.-X. Shang: Chin. Phys. B, 2012, vol. 21, p. 016202. https://doi.org/10.1088/1674-1056/21/1/016202.

    Article  CAS  Google Scholar 

  49. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito: Phys. Rev. B, 2004, vol. 70, p. 174113. https://doi.org/10.1103/PhysRevB.70.174113.

    Article  CAS  Google Scholar 

  50. L. Koči, Y. Ma, A.R. Oganov, P. Souvatzis, and R. Ahuja: Phys. Rev. B, 2008, vol. 77, p. 214101. https://doi.org/10.1103/PhysRevB.77.214101.

    Article  CAS  Google Scholar 

  51. J. Trivisonno, S. Vatanayon, M. Wilt, J. Washick, and R. Reifenberger: J. Low Temp. Phys., 1973, vol. 12, pp. 153–69. https://doi.org/10.1007/BF00654733.

    Article  CAS  Google Scholar 

  52. P.-J. Yang, Q.-J. Li, T. Tsuru, S. Ogata, J.-W. Zhang, H.-W. Sheng, Z.-W. Shan, G. Sha, W.-Z. Han, J. Li, and E. Ma: Acta Mater., 2019, vol. 168, pp. 331–42. https://doi.org/10.1016/j.actamat.2019.02.030.

    Article  CAS  Google Scholar 

  53. F. Mouhat and F.-X. Coudert: Phys. Rev. B, 2014, vol. 90, p. 224104. https://doi.org/10.1103/PhysRevB.90.224104.

    Article  CAS  Google Scholar 

  54. V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng: Comput. Phys. Commun., 2021, vol. 267, p. 108033. https://doi.org/10.1016/j.cpc.2021.108033.

    Article  CAS  Google Scholar 

  55. S.F. Pugh: Lond. Edinb. Dublin Philos. Mag. J. Sci., 1954, vol. 45, pp. 823–43. https://doi.org/10.1080/14786440808520496.

    Article  CAS  Google Scholar 

  56. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel: Nat. Mater., 2011, vol. 10, pp. 823–37. https://doi.org/10.1038/nmat3134.

    Article  CAS  Google Scholar 

  57. D. Pettifor: Mater. Sci. Technol., 1992, vol. 8, pp. 345–49.

    Article  CAS  Google Scholar 

  58. P. Tsakiropoulos: Prog. Mater. Sci., 2022, vol. 123, p. 100714. https://doi.org/10.1016/j.pmatsci.2020.100714.

    Article  CAS  Google Scholar 

  59. D. Ma, M. Friák, J. von Pezold, D. Raabe, and J. Neugebauer: Acta Mater., 2015, vol. 85, pp. 53–66. https://doi.org/10.1016/j.actamat.2014.10.044.

    Article  CAS  Google Scholar 

  60. G.P.M. Leyson, W.A. Curtin, L.G. Hector, and C.F. Woodward: Nat. Mater., 2010, vol. 9, pp. 750–55. https://doi.org/10.1038/nmat2813.

    Article  CAS  Google Scholar 

  61. G.P.M. Leyson, L.G. Hector, and W.A. Curtin: Acta Mater., 2012, vol. 60, pp. 3873–84. https://doi.org/10.1016/j.actamat.2012.03.037.

    Article  CAS  Google Scholar 

  62. I. Toda-Caraballo and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 85, pp. 14–23. https://doi.org/10.1016/j.actamat.2014.11.014.

    Article  CAS  Google Scholar 

  63. C. Pöhl, J. Schatte, and H. Leitner: Mater. Sci. Eng. A, 2013, vol. 559, pp. 643–50. https://doi.org/10.1016/j.msea.2012.09.004.

    Article  CAS  Google Scholar 

  64. L. Čižek, P. Kratochvíl, and B. Smola: J. Mater. Sci., 1974, vol. 9, pp. 1517–20. https://doi.org/10.1007/BF00552938.

    Article  Google Scholar 

  65. R. Labusch: Phys. Status Solidi (B), 1970, vol. 41, pp. 659–69. https://doi.org/10.1002/pssb.19700410221.

    Article  Google Scholar 

  66. M.-X. Wang, H. Zhu, G.-J. Yang, K. Liu, J.-F. Li, and L.-T. Kong: Mater. Des., 2021, vol. 198, p. 109359. https://doi.org/10.1016/j.matdes.2020.109359.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFB0702901 and 2017YFB0701502), the Key Research Project of Zhejiang Laboratory (No. 2021PE0AC02), and Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing (No. 20DZ2294000). The authors acknowledge the Beijing Super Cloud Computing Center, Hefei Advanced Computing Center, and Shanghai University for providing HPC resources.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Xiao, B., Chen, J. et al. Multi-component Alloying Effects on the Stability and Mechanical Properties of Nb and Nb–Si Alloys: A First-Principles Study. Metall Mater Trans A 54, 450–472 (2023). https://doi.org/10.1007/s11661-022-06868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06868-y

Navigation