Skip to main content
Log in

Reinterpretation of the Mean Field Hypothesis in Analytical Models of Ostwald Ripening and Grain Growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A long right tail is a common feature of experimental quasi-stationary size distributions of particles and grains that is not explained by the classical theories based on the mean field hypothesis. In this work, it is shown that the “pairwise interaction” approach, here presented in a comprehensive exposition involving both Ostwald ripening and grain growth, is a valid alternative to classical mean field theories since it produces more realistic predictions of the distribution shapes. The new analytical models are based on the mean field concept but rely on a detailed physical description of the elementary interactions responsible for the exchange of matter. They are jointly reviewed and compared with the corresponding classical Lifshitz–Slyozov–Wagner and Hillert models. The interactions are treated as a sum of elementary and specific contributions rather than as a generalized exchange with the mean field. The framework is complemented by the introduction of the “interaction volume” in Ostwald ripening and of the “local grain boundary curvature” in grain growth which are both size-dependent and permit to represent more precisely the local physics of the exchanges. The excellent results obtained in reproducing the experiments without any ad hoc parameters suggest that the mean field hypothesis adopted in the classical theories to describe the environment of a growing particle or grain represents a too drastic approximation. Therefore, it is proposed to replace the classical mean field by a “local mean field,” i.e., the ensemble of actual mean environments interacting with any single element of a given size. This alternative assumption induces a higher growth rate for large particles or grains compared with their respective mean field theories, thus producing right-skewed asymptotic distributions. For particles at small volume fraction the stationary distribution resembles a lognormal function, whereas for grains in normal grain growth regime the Rayleigh distribution is found as solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] P.E. Di Nunzio, Phil. Mag., 2018, vol. 98, pp. 388-407.

    Article  Google Scholar 

  2. [2] P.E. Di Nunzio, Phil. Mag., 2018, vol. 98, pp. 1674-1695.

    Article  Google Scholar 

  3. [3] P.E. Di Nunzio, Acta Mater., 2001, vol. 49, pp. 3635-3643.

    Article  Google Scholar 

  4. [4] P.E. Di Nunzio, Metall. Mater. Trans. A, 2002, vol. 33, pp. 3329-3337.

    Google Scholar 

  5. [5] P.E. Di Nunzio, Phys. Rev. B, 2003 vol. 68, pp. 115432.

    Article  Google Scholar 

  6. [6] O. Hunderi and N. Ryum, Mater. Sci. Forum, 1992, vol. 94-96, pp. 89-100.

    Article  Google Scholar 

  7. [7] M. Hillert, Acta Metall., 1965, vol. 13, pp. 227-238.

    Article  Google Scholar 

  8. [8] M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 783-792.

    Article  Google Scholar 

  9. [9] D.J. Srolovitz, M.P. Anderson, P. S. Sahni, and G.S. Grest, Acta Metall., 1984, vol. 32, pp. 793-802.

    Article  Google Scholar 

  10. [10] D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 1429-1438.

    Article  Google Scholar 

  11. [11] D. Raabe, Acta Mater., 2000, vol. 48, pp. 1617-1628.

    Article  Google Scholar 

  12. [12] D. Zöllner and P. Streitenberger, Scripta Mater., 2006, vol. 54, pp. 1697-1702.

    Article  Google Scholar 

  13. [13] D. Zöllner, Comput. Mater. Sci., 2011, vol. 50, pp. 2712-2719.

    Article  Google Scholar 

  14. M. Morháč and E. Morháčova: in Applications of Monte Carlo Method in Science and Engineering, S. Mordechai, ed., 2011. https://doi.org/10.5772/1954.

  15. S.K. Esche: in Applications of Monte Carlo Method in Science and Engineering, S. Mordechai (Ed.), 2011. https://doi.org/10.5772/1954.

  16. [16] H.L. Ding, Y.Z. He, L.F. Liu and W.J. Ding, J. Cryst. Growth, 2006, vol. 293, pp. 489-497.

    Article  Google Scholar 

  17. [17] S. Raghavan and S.S. Sahay, Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 203-209.

    Article  Google Scholar 

  18. [18] C.E. Krill III and L.-Q. Chen, Acta Mater., 2002, vol. 50, pp. 3057-3073.

    Google Scholar 

  19. [19] S. Xiao and W. Hu, J. Cryst. Growth, 2006, vol. 286, pp. 512-517.

    Article  Google Scholar 

  20. [20] S.M. Foiles, Mater. Sci. Forum, 2012, vol. 715-716, pp. 599-604.

    Article  Google Scholar 

  21. J. Yin: Molecular Dynamics Study on the Grain Growth in Nanocrystalline Aluminum. Mechanical Engineering Masters Theses, Paper 4, 2016.

  22. [22] T. Kato, T. Nagai, Y. Sasajima and J. Onuki, Materials Trans., 2010, vol. 51, pp. 664-669.

    Article  Google Scholar 

  23. [23] K. Brakke, Experimental Mathematics, 1992, vol. 1, pp. 141-165.

    Article  Google Scholar 

  24. [24] K. Marthinsen, O. Hunderi and N. Ryum, Acta Mater., 1996, vol. 44, pp. 1681-1689.

    Article  Google Scholar 

  25. [25] P.R. Rios and M.E. Glicksman, Acta Mater., 2006, vol. 54, pp. 5313-5321.

    Article  Google Scholar 

  26. L.A. Barrales Mora, G. Gottstein and L.S. Shvindlerman, Acta Mater., 2008, vol. 56, pp. 5915-5926.

    Article  Google Scholar 

  27. [27] P. Streitenberger and D. Zöllner, Acta Mater., 2011, vol. 59, pp. 4235-4243.

    Article  Google Scholar 

  28. [28] A.E. Johnson and P.W. Voorhees, Acta Mater., 2014, vol. 67, pp. 134-144.

    Article  Google Scholar 

  29. R. Darvishi Kamachali, A. Abbondandolo, K.F. Siburg and I. Steinbach, Acta Mater., 2015, vol. 90, pp. 252-258.

    Article  Google Scholar 

  30. [30] R.T. DeHoff, B.R. Patterson, C.A. Sahi and S. Chiu, Acta Mater., 2015, vol. 100, pp. 240-246.

    Article  Google Scholar 

  31. [31] P. Streitenberger and D. Zöllner, Acta Mater., 2015, vol. 88, pp. 334-345.

    Article  Google Scholar 

  32. [32] C. Mießen, M. Liesenjohann, L.A. Barrales-Mora, L.S. Shvindlerman and G. Gottstein, Acta Mater., 2015 vol. 99, pp. 39-48.

    Article  Google Scholar 

  33. [33] K. McReynolds, K.-A. Wu and P.W. Voorhees, Acta Mater., 2016, vol. 120, pp. 264-272.

    Article  Google Scholar 

  34. [34] J. Svoboda, P. Fratzl, G.A. Zickler and F.D. Fischer, Acta Mater., 2016, vol. 115, pp. 442-447.

    Article  Google Scholar 

  35. [35] V. Yadav and N. Moelans, Acta Mater., 2018, vol. 156, pp. 275-286.

    Article  Google Scholar 

  36. [36] V. Yadav and N. Moelans, Scripta Mater., 2018, vol. 142, pp. 148-152.

    Article  Google Scholar 

  37. J. Gao, M. Wei. L. Zhang, Y. Du, Z. Liu and B. Huang, Metall. Mater. Trans. A, 2018, vol. 49, pp 6442–6456.

    Article  Google Scholar 

  38. [38] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-45.

    Article  Google Scholar 

  39. [39] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581-594.

    Google Scholar 

  40. [40] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2001-2011.

    Article  Google Scholar 

  41. [41] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2013-2030.

    Article  Google Scholar 

  42. [42] A. Baldan, J. Mater. Sci., 2002, vol. 37, pp. 2171-2202.

    Article  Google Scholar 

  43. [43] O. Hunderi and N. Ryum, Scand. J. Metall., 1963, vol. 10, pp. 238-240.

    Google Scholar 

  44. [44] A.J. Ardell, Acta Metall., 1972, vol. 20, pp. 61-71.

    Article  Google Scholar 

  45. [45] A.D. Brailsford and P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-497.

    Article  Google Scholar 

  46. [46] C.K.L. Davies, P. Nash and R.N. Stevens, Acta Metall., 1980, vol. 28, pp. 179-189.

    Article  Google Scholar 

  47. [47] K. Tsumuraya and Y. Miyata, Acta Metall., 1983, vol. 31, pp. 437-452.

    Article  Google Scholar 

  48. [48] J.A. Marqusee and J. Ross, J. Chem. Phys., 1984, vol. 80, pp. 536-543.

    Article  Google Scholar 

  49. [49] L.C. Brown, Acta Metall., 1989, vol. 37, pp. 71-77.

    Article  Google Scholar 

  50. [50] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1986, vol. 34, pp. 2119-2128.

    Article  Google Scholar 

  51. [51] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 907-913.

    Article  Google Scholar 

  52. [52] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 915-922.

    Article  Google Scholar 

  53. A.J. Ardell: Proc. Int. Conf. “Phase transformations ’87”, G.W. Lorimer, ed., The Institute of Metals, 1988.

  54. [54] S.P. Marsh and M.E. Glicksman, Acta Mater., 1996, vol. 44, pp. 3761-3771.

    Article  Google Scholar 

  55. [55] K. Kim and P.W. Voorhees, Acta Mater., 2018, vol. 152 pp. 327-337.

    Article  Google Scholar 

  56. [56] T. Philippe and P.W. Voorhees, Acta Mater., 2013, vol. 61, pp. 4237-4244.

    Article  Google Scholar 

  57. [57] F. Han, Materials, 2018, vol. 11, pp. 1936-1952.

    Article  Google Scholar 

  58. [58] S.G. Kim, Acta Mater., 2007, vol. 55, pp. 6513-6525.

    Article  Google Scholar 

  59. [59] R.N. Stevens and C.K.L. Davies, Scripta Mater., 2002, vol. 46 pp. 19-23.

    Article  Google Scholar 

  60. [60] R.D. Vengrenovich, Yu.V. Gudyma and S.V. Yarema, Scripta Mater., 2002, vol. 46, pp. 363-367.

    Article  Google Scholar 

  61. [61] C. Zener, J. Appl. Phys., 1949, vol. 20, pp. 950-953.

    Article  Google Scholar 

  62. [62] C. Wert and C. Zener, J. Appl. Phys., 1950, vol. 21, pp. 5-8.

    Article  Google Scholar 

  63. [63] P.W. Voorhees, Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 197-215.

    Article  Google Scholar 

  64. [64] N.P. Louat, Acta Metall., 1974, vol. 22, pp. 721-724.

    Article  Google Scholar 

  65. [65] J. Svoboda and F.D. Fischer, Acta Mater., 2014, vol. 79, pp. 304-314.

    Article  Google Scholar 

  66. [66] D.J. Rowenhorst, J.P. Kuang, K. Thornton and P.W. Voorhees, Acta Mater., 2006, vol. 54, pp. 2027-2039.

    Article  Google Scholar 

  67. H. Hougardy and Y. Lan: Modelling of Particle Growth and Application to the Carbide Evolution in Special Steels for High Temperature Service, Final Report EUR 18633 EN, Luxembourg, 1999.

  68. [68] T. Werz, M. Baumann, U. Wolfram and C.E. Krill III, Mater. Characterization, 2014, vol. 90, pp. 185-195.

    Article  Google Scholar 

  69. [69] P. Feltham, Acta Metall., 1957, vol. 5, pp. 97-105.

    Article  Google Scholar 

  70. [70] H. Hu, Can. Metall. Q., 1974, vol. 13, pp. 275-286.

    Article  Google Scholar 

  71. [71] J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst and H.F. Poulsen, Acta Mater., 2018, vol. 156, pp. 76-85.

    Article  Google Scholar 

  72. [72] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5725-5744.

    Article  Google Scholar 

  73. [73] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5745-5754.

    Article  Google Scholar 

  74. [74] C.S. Pande, Acta Metall., 1987, vol. 35, pp. 2671-2678.

    Article  Google Scholar 

  75. [75] J. Svoboda and F.D. Fischer, Acta Mater., 2007, vol. 55, pp. 4467-4474.

    Article  Google Scholar 

  76. S. Protasova and V. Sursaeva: in Proceedings of the 1st Joint International Conference on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer, Berlin, 2001, pp. 557–62.

  77. [77] J. Jeppsson, J. Ågren and M. Hillert, Acta Mater., 2008, vol. 56, pp. 5188-5201.

    Article  Google Scholar 

  78. [78] K.G. Wang, M.E. Glicksman and C. Lou, Phys. Rev. E, 2006, vol. 73, pp. 061502.

    Article  Google Scholar 

  79. [79] M. Marder, Phys. Rev. A, 1987, vol. 36, pp. 858-874.

    Article  Google Scholar 

  80. [80] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2000, vol. 48, pp. 2689-2701.

    Article  Google Scholar 

  81. [81] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2001, vol. 49, pp. 699-709.

    Article  Google Scholar 

  82. [82] Y. Tomokiyo, K. Yahiro, S. Matsumura, K. Oki and T. Guchi, Effect of spatial correlations of particles on Ostwald ripening, in S. Komura, H. Furukawa (eds.) Dynamics of ordering processes in condensed matter, Springer, Boston MA (1988).

    Google Scholar 

  83. [83] O. Hunderi, J. Friis, K. Marthinsen and N. Ryum, Scripta Mater., 2006, vol. 55, pp. 939-942.

    Article  Google Scholar 

  84. [84] F.S.L. Ng, Acta Mater., 2016, vol. 120, pp. 453-462.

    Article  Google Scholar 

  85. [85] F.D. Fischer, J. Svoboda, E. Gamsjäger and E.R. Oberaigner, Acta Mater., 2008, vol. 56, pp. 5395-5400.

    Article  Google Scholar 

  86. [86] D.E. Kile, D.D. Eberl, A.R. Hoch and M.M. Reddy, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2937-2950.

    Article  Google Scholar 

Download references

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Emilio Di Nunzio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Nunzio, P.E. Reinterpretation of the Mean Field Hypothesis in Analytical Models of Ostwald Ripening and Grain Growth. Metall Mater Trans A 50, 2066–2080 (2019). https://doi.org/10.1007/s11661-019-05155-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05155-7

Navigation