Skip to main content
Log in

Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The physical basis behind the Ostwald ripening process for two-phase mixture has been reviewed in detail, using the various theories developed to describe this process. The Ostwald ripening, also termed second phase coarsening, is generally thought to be slow, diffusion-controlled process which occurs subsequent to phase separation under extremely small under-saturation levels. The major advance for the description of this process was made when Lifshitz, Slyozov and Wagner (also known as the LSW theory) published their papers more than fourty years ago. This classical LSW theory predicts that the ripening kinetics and the particle size distribution function are applicable to dilute systems only [i.e. when the volume fraction (Q) of second phase approaces zero: Q → 0], in which particle-particle interactions are not important. After the publication of the LSW theory, many experimentalists tested the veracity of the theory. Experimentalists have confirmed the prediction of self-similar ripening behavior at long times. However, virtually none of the reported distributions are of the form predicted by the LSW theory. The reported distributions are generally broader and more symmetric than the LSW predictions. It was later realized that a major problem with the LSW approach was the mean field nature of the kinetic equation. In order to remove the zero volume fraction assumption of the LSW theory, the many theories have been developed based on the statistically averaged diffusion interaction of a particle of given size class with its surroundings, using both analytic and numerical methods. Many attempts to determine the statistically averaged growth rate of a particle either do not account for the long-range nature of the diffusional field surrounding the particle, and/or employed ad hoc assumptions in an attempt to account for the diffusional interactions between particles. The strength of the diffusional interactions between particles stems from the long range Coulombic nature of the diffusion field surrounding a particle. As a result, particle interactions occur at distances of many particle diameters and restrict the validity of LSW theory to the unrealistic limit of zero volume fraction of coarsening phase. More realistic models of the ripening process at finite-volume fractions (Q) of coarsening phase have been proposed by various workers such as Brailsford-Wynblatt (1979), Voorhees-Glicksman (1983), Marqusee-Rose (1984), Tokuyama-Kawasaki (1984), Enomoto-Tokuyama-Kawasaki (ETK) (1986), and Yao-Elder-Guo-Grant (YEGG) (1993) models. Although a great deal of progress has been made in understanding Ostwald ripening, a fully satisfactory approach has not yet been found, and it has remained a vexing problem in the field. At present, it is very difficult to determine which of these theories best describes coarsening at finite volume fraction. The statistical mechanical theories, developed to describe systems in which Q ≪ 1, employed the same microscopic equation to describe the coarsening rates of individual particles, but different techniques to perform the statistical averaging. In addition, these theories can be distinguished on yet a finer scale. All of the theories predict that the rate constant will vary as Q 1/2 in this low volume fraction limit. These theories predict that the scaled time-independent particle radius distributions become broader and more symmetric than those predicted by LSW as the volume fraction increases. Clearly more experimental and theoretical work is necessary in order to settle the subtle disagreement now existing between the various Ostwald ripening theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. OSTWALD, Z. Phys. Chem. 37 (1901) 385.

    Google Scholar 

  2. Idem., “Analytisch Chemie,” 3rd ed. (Engelmann, Leipzig, 1901).

    Google Scholar 

  3. G. W. GREENWOOD, Acta Met. 4 (1956) 243.

    Google Scholar 

  4. R. ASIMOV, ibid. 11 (1962) 72.

    Google Scholar 

  5. I. M. LIFSHITZ and V. V. SLYOZOV, J. Phys. Chem. Solids 19 (1961) 35.

    Google Scholar 

  6. Idem., Sov. Phys.: Solid State 1 (1960) 1285.

    Google Scholar 

  7. C. WAGNER, Z. Electrochem. 65 (1961) 581.

    Google Scholar 

  8. A. J. ARDELL, Acta Met. 20 (1972) 61.

    Google Scholar 

  9. A. D. BRAILSFORD and P. WYNBLATT, ibid. 27 (1979) 489.

    Google Scholar 

  10. C. K. L. DAVIES, P. NASH and R. N. STEVENS, ibid. 28 (1980) 179.

    Google Scholar 

  11. K. TSUMARAYA and Y. MIYATA, ibid. 31 (1983) 437.

    Google Scholar 

  12. J. A. MARQUSEE and J. ROSE, J. Chem. Phys. 80 (1984) 536.

    Google Scholar 

  13. P. W. VOORHEES and M. E. GLICKSMAN, Acta Met. 32 (1984) 2001.

    Google Scholar 

  14. Idem., ibid. 32 (1984) 2013.

  15. J. H. YAO, K. R. ELDER, H. GUO and M. GRANT, Phys. Review B 47 (1993) 14100.

    Google Scholar 

  16. M. MARDER, Phys. Review A 36 (1987) 858.

    Google Scholar 

  17. Y. ENOMOTO, M. TOKUYAMA and K. KAWASAKI, Acta Met. 34 (1986) 2119.

    Google Scholar 

  18. M. TOKUYAMA and K. KAWASAKI, Physica A 123 (1984) 386.

    Google Scholar 

  19. P. W. VOORHEES, Annu. Rev. Mater. Sci. 22 (1992) 197.

    Google Scholar 

  20. S. CORIELL and R. L. PARKER, J. Appl. Phys. 36 (1965) 632.

    Google Scholar 

  21. J. W. GIBBS, 1906, “The Collected Works of J. W. Gibbs” (Longmans, Green and Co, Dover, New York).

  22. M. HILLERT, “Lectures on the Theory of Phase Transformations” (New York, 1975).

  23. P. W. VOORHEES, Ph.D. Thesis, Rensselaer Polytechnique Institue, 1982.

  24. P. W. VOORHEES and M. E. GLICKSMAN, Metall. Trans. A 15A (1984) 1081.

    Google Scholar 

  25. J. J. WEINand J. W. CAHN, “Sintering and Related Phenomena” (Plenum Press, London, 1973) p. 151.

    Google Scholar 

  26. P. W. VOORHEES, J. Statistical Physics 38 (1985) 231.

    Google Scholar 

  27. R. D. VENGRENOVITCH, Acta Met. 30 (1982) 1079.

    Google Scholar 

  28. P. K. RASTOGI and A. J. ARDELL, Acta Met. 19 (1971) 321.

    Google Scholar 

  29. D. H. JACK and R. W. K. HONEYCOMBE, Acta Met. 20 (1972) 787.

    Google Scholar 

  30. A. J. ARDELL and R. B. NICHOLSON, J. Phys. Chem. Solids 27 (1966) 1793.

    Google Scholar 

  31. M. CHATURVEDI and D. W. CHUNG, J. Inst. Metals 101 (1973) 253.

    Google Scholar 

  32. D. J. CHELLMAN and A. J. ARDELL, Acta Met. 22 (1974) 577.

    Google Scholar 

  33. Y. SENO, Y. TOMOKIYO, K. OKI and T. EZUCHI, Trans. Japan Inst. Metals 24 (1983) 491.

    Google Scholar 

  34. T. HIRATA and D. H. KIRKWOOD, Acta Met. 25 (1977) 1425.

    Google Scholar 

  35. S. C. HARDY and P. W. VOORHEES, Metall. Trans. A 19 (1988) 2713.

    Google Scholar 

  36. A. J. ARDELL, “The Mechanism of Phase Transformations in Crystalline Solids” (Institute of Metals, London, 1969) p. 111.

    Google Scholar 

  37. M. HILLERT, “Lectures on the Theory of Phase Transformations” (Am. Inst. Min. Pet. Metall. Eng, New York, 1975).

    Google Scholar 

  38. N. BOWER and J. A. WHITEMAN, “The Mechanism of Phase Transformations in Crystalline Solids” (Inst. of Metals, London, 1969) p. 119.

    Google Scholar 

  39. P. WIRTZ and M. E. FINE, J. Amer. Ceramic Soc. 51 (1968) 402.

    Google Scholar 

  40. T. HIRATA and D. H. KIRKWOOD, Acta Met. 25 (1977) 1425.

    Google Scholar 

  41. C. H. KANGand D. N. YON, Met. Trans. A 12A (1981) 65.

    Google Scholar 

  42. Y. MASUDA and R. WATANABE, in “Sintering Processes,” Materials Science Research, Vol. 13, edited by G. C. Kuczynski (Plenum, New York, 1979) p. 3.

    Google Scholar 

  43. M. TOKUYAMA, K. KAWASAKI and Y. ENOMOTO, Physica 134A (1986) 323.

    Google Scholar 

  44. K. KAWASAKI, Y. ENOMOTO and M. TOKUYAMA, ibid. 135A (1986) 426.

    Google Scholar 

  45. C. W. BEENEKKER, Phys. Rev. A 33 (1986) 4482.

    Google Scholar 

  46. A. J. ARDELL, Phys. Rev. B 41 (1990) 2554.

    Google Scholar 

  47. B. U. FELDERHOF and J. M. DEUTCH, J. Chem. Phys. 64 (1976) 4551.

    Google Scholar 

  48. M. MUTHUKUMAR and R. I. CUKIER, J. Stat. Mech. 26 (1981) 453.

    Google Scholar 

  49. M. BIXON and R. ZWANZIG, J. Chem. Phys. 75 (1981) 2359.

    Google Scholar 

  50. T. R. KIRKPATRICK, ibid. 76 (1982) 4255.

    Google Scholar 

  51. M. TOKUYAMA and R. I. CUKIER, ibid. 76 (1982) 6202.

    Google Scholar 

  52. J. A. MARQUSEE and J. ROSS, ibid. 79 (1983) 373.

    Google Scholar 

  53. H. WENDT and P. HANSEN, Acta Met. 31 (1983) 1649.

    Google Scholar 

  54. M. E. GLICKSMAN and P. VOORHEES, “Phase Transformations in Solids” (edited by Tsakalakos) p. 451.

  55. J. D. GUNTON, M. SAN MIGUEL and P. S. SAHNI, in “Phase Transformations and Critical Phenomena,” Vol. 8, edited by C. Domb and J. L. Lebowitz (Academic, London, 1983).

    Google Scholar 

  56. M. MARDER, Phys. Rev. Lett. 55 (1985) 2953.

    PubMed  Google Scholar 

  57. J. H. YAO, K. R. ELDER, H. GUO and M. GRANT, Phys. Rev. B 45 (1992) 8173.

    Google Scholar 

  58. Y. ENOMOTO, M. TOKUYAMA and K. KAWASAKI, Acta Met. 35 (1987) 907.

    Google Scholar 

  59. S. P. MARSH, Ph.D. thesis, 1991, Rensselaer Polytechniques Institute.

  60. Idem., In “Simulation and Theory of Evolving Microstructures,” edited by M. P. Anderson and A. D. Rollet (Warrendale, Penn. Min. Mater. Soc.) p. 167.

  61. W. C. JOHNSON, T. A. ABINANDANAN and P. W. VOORHEES, Acta Metall. 38 (1990) 1349.

    Google Scholar 

  62. C. W. J. BEENAKKER, Phys. Rev. A 33 (1986) 4482.

    Google Scholar 

  63. A. D. BRAILSFORD,J. Nuc. Mater. 60 (1976) 257.

    Google Scholar 

  64. D. F. CALET and J. M. DEUTCH, Ann. Rev. Phys. Chem. 34 (1983) 394.

    Google Scholar 

  65. P. P. EWALD, Ann. Phys. (Leipzig) 64 (1921) 253.

    Google Scholar 

  66. A. J. ARDELL, Scripta Met. 24 (1990) 343.

    Google Scholar 

  67. S. C. HARDY, N. AKAIWA and P. W. VOORHEES, Acta Met. 39 (1991) 2931.

    Google Scholar 

  68. K. MAHALINGAM, B. P. GU and G. L. LIEDL, ibid. 35 (1987) 483.

    Google Scholar 

  69. A. N. NIEMI and T. H. COURTNEY, Acta Met. 3 (1981) 1393.

    Google Scholar 

  70. C. H. KANG and D. N. YOON, Metall. Trans. A 12 (1981) 65.

    Google Scholar 

  71. H. CALDERON and M. E. FINE, Mater. Sci. And Eng. 63 (1984) 197.

    Google Scholar 

  72. N. BOWER and J. A. WHITEMAN, “The Mechanism of Phase Transformations in Crystalline Solids” (Inst. of Metals, London, 1969) p. 119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldan, A. Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories . Journal of Materials Science 37, 2171–2202 (2002). https://doi.org/10.1023/A:1015388912729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015388912729

Keywords

Navigation