Skip to main content
Log in

Effect of simulated thermal cycles on the microstructure of the heat-affected zone in HSLA-80 and HSLA-100 steel plates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of weld thermal simulation on the transformation kinetics and heat-affected zone (HAZ) microstructure of two high-strength low-alloy (HSLA) steels, HSLA-80 and HSLA-100, has been investigated. Heat inputs of 10 kJ/cm (fast cooling) and 40 kJ/cm (slow cooling) were used to generate single-pass thermal cycles with peak temperatures in the range of 750 °C to 1400 °C. The prior-austenite grain size is found to grow rapidly beyond 1100 °C in both the steels, primarily with the dissolution of niobium carbonitride (Nb(CN)) precipitates. Dilatation studies on HSLA-80 steel indicate transformation start temperatures (T s ) of 550 °C to 560 °C while cooling from a peak temperature (T p ) of 1000 °C. Transmission electron microscopy studies show here the presence of accicular ferrite in the HAZ. The T s value is lowered to 470 °C and below when cooled from a peak temperature of 1200 °C and beyond, with almost complete transformation to lath martensite. In HSLA-100 steel, the T s value for accicular ferrite is found to be 470 °C to 490 °C when cooled from a peak temperature of 1000 °C, but is lowered below 450 °C when cooled from 1200 °C and beyond, with correspondingly higher austenite grain sizes. The transformation kinetics appears to be relatively faster in the fine-grained austenite than in the coarse-grained austenite, where the niobium is in complete solid solution. A mixed microstructure consisting of accicular ferrite and lath martensite is observed for practically all HAZ treatments. The coarse-grained HAZ (CGHAZ) of HSLA-80 steel shows a higher volume fraction of lath martensite in the final microstructure and is harder than the CGHAZ of HSLA-100 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.R. Myhr and O. Grong: Acta Metall. Mater., 1990, vol. 38, pp. 449–60.

    Article  CAS  Google Scholar 

  2. L.E. Svensson: Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, FL, 1994, pp. 101–06.

    Google Scholar 

  3. R.E. Dolby: Weld. J., 1979, vol. 58, pp. 225s-238s.

    Google Scholar 

  4. D. Radaj: Heat Effects of Welding, Springer-Verlag Publications, Heidelberg, 1992, pp. 100–03.

    Google Scholar 

  5. J.C. Ion, K.E. Easterling, and M.F. Ashby: Acta Metall., 1984, vol. 32, pp. 1949–62.

    Article  CAS  Google Scholar 

  6. M.R. Krishnadev, L.T. Bowker, J.T. McGrath, V.K. Vasudevan, and K.D. Challenger: Proc. 2nd Int. Conf. on Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 799–803.

  7. M.R. Krishnadev, W.L. Zhang, and J.T. Bowker: Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 599–603.

  8. A.D. Wilson, J. Met., 1987, vol. 29, pp. 39–48.

    Google Scholar 

  9. S.D. Bhole and A.G. Fox: Can. Metall. Q., 1996, vol. 35, pp. 151–57.

    Article  Google Scholar 

  10. R.W. Fonda, G. Spanos, and R.A. Vandermeer: Proc. 4th Int. Conf. on Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 277–82.

  11. S.W. Thompson: 40th MWSP Conf. Proc., ISS, Warrendale, PA, 1998, pp. 663–73.

  12. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93.

    Article  CAS  Google Scholar 

  13. O. Grong: Metallurgical Modelling of Welding, The Institute of Materials, London, 1997, pp. 409–11.

    Google Scholar 

  14. C.E. Cross, O. Grong, S. Liu, and J.F. Capes: in Applied Metallography, G.F. Vander Voort, ed., Van Nostrand Reinhold, New York, NY, 1986, pp. 197–210.

    Google Scholar 

  15. P.L. Harrison and R.A. Farrar: Int. Mater. Rev., 1989, vol. 34, pp. 35–51.

    CAS  Google Scholar 

  16. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Proc. Int. Conf. on Microalloyed HSLA Steel, Microalloying '88, ASM INTERNATIONAL Metals Park, OH, 1988, pp. 259–75.

  17. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1493–1507.

    CAS  Google Scholar 

  18. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.

    Google Scholar 

  19. N.N. Rykalin: Berechnung der Wärmevorgänge beim Schweissen, VEB Verlag Technik, Berlin, 1957.

    Google Scholar 

  20. S.W. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573–88.

    Google Scholar 

  21. G.R. Speich and T.M. Scoonover: in Processing, Microstructure and Properties of HSLA Steels, A.J. DeArdo, ed., TMS, Warrendale, PA, 1988, pp. 263–86.

    Google Scholar 

  22. A.G. Fox, S. Mikalac, and M.G. Vassilaros: proc. G.R. Speich Symp., ISS, Warrendale, PA, 1992, pp. 155–61.

  23. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: Key Eng. Mater., Trans Tech Publication, Aedermannsdorf, Switzerland, 1993, vols. 84–85, pp. 209–36.

    Google Scholar 

  24. M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: J. Mater. Eng. Performance, 1998, vol. 7, pp. 247–57.

    Article  CAS  Google Scholar 

  25. S.K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2259–70.

    Article  Google Scholar 

  26. D. Wenpu, F. Zuabao, and Y. Lang: Mater. Characterization, 1996, vol. 37, pp. 169–75.

    Article  Google Scholar 

  27. O. Grong: Metallurgical Modelling of Welding, The Institute of Materials, London, 1997, pp. 303–20.

    Google Scholar 

  28. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  29. S. Suzuki and H.K.D.H. Bhadeshia: Mater. Sci. Eng., 1994, vol. A186, pp. 157–62.

    Article  CAS  Google Scholar 

  30. R.W.K. Honeycombe and H.K.D.H. Bhadesia: Steels—Microstructure and Properties, Edward Arnold, London, 1995, p. 103

    Google Scholar 

  31. T. Gladman and F.B. Pickering: J. Iron Steel. Inst., 1967, vol. 205, pp. 653–64.

    CAS  Google Scholar 

  32. L.J. Cuddy and L.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.

    CAS  Google Scholar 

  33. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.

    Article  CAS  Google Scholar 

  34. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 194–200.

    Google Scholar 

  35. M.F. Ashby and K.E. Easterling: Acta Metall., 1982, vol. 30, pp. 1969–78.

    Article  CAS  Google Scholar 

  36. I. Anderson and O. Grong: Acta Metall. 1995, vol. 43, pp. 2673–88.

    Article  Google Scholar 

  37. M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1431–37.

    CAS  Google Scholar 

  38. T.A. Kop, P.G.W. Remijn, J. Sietsma, and S. Van der Zwaag: Materials Science Forum, Trans Tech Publication. Aedermannsdorf, Switzerland, 1998, vols. 284–286, pp. 193–200.

    Google Scholar 

  39. G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194, pp. 179–86.

    Article  Google Scholar 

  40. H.K.D.H. Bhadeshia: Proc. 3rd Int. Conf. on Welding Research, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 213–22.

  41. P.A. Manohar, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int. 1996, vol. 36, pp. 1486–93.

    Google Scholar 

  42. T. Abe, K. Tsukada, and J. Kozasu: Proc. Int. Conf. on HSLA Steels'85, ASM INTERNATIONAL, Material Park, OH, 1986, pp. 103–11.

  43. G. Krauss and A.R. Marder: Metall. Trans., 1971, vol. 2, pp. 2343–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shome, M., Gupta, O.P. & Mohanty, O.N. Effect of simulated thermal cycles on the microstructure of the heat-affected zone in HSLA-80 and HSLA-100 steel plates. Metall Mater Trans A 35, 985–996 (2004). https://doi.org/10.1007/s11661-004-1002-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-1002-y

Keywords

Navigation