Skip to main content
Log in

HSLA-100 steels: Influence of aging heat treatment on microstructure and properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The structural steels used in critical construction applications have traditionally been heat-treated low-alloy steels. These normalized and/or quenched and tempered steels derive strength from their carbon contents. Carbon is a very efficient and cost-effective element for increasing strength in ferrite-pearlite or tempered martensitic structures, but it is associated with poor notch toughness. Furthermore, it is well known that both the overall weldability and weldment toughness are inversely related to the carbon equivalent values, especially at high carbon contents. The stringent control needed for the welding of these traditional steels is one of the major causes of high fabrication costs.

In order to reduce fabrication cost while simultaneously improving the quality of structural steels, a new family of high-strength low-alloy steels with copper additions (HSLA-100) has been developed. The alloy design philosophy of the new steels includes a reduction in the carbon content, which improves toughness and weldability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Montemarano, B.P. Sack, M.G. Vassilaros, and H.H. Vanderveldt,J. Ship. Prod., Vol 2 (No. 3), Aug 1986, p 145

    Google Scholar 

  2. T.L. Anderson, J.A. Hyatt, and J.C. West,Weld. J., Sept 1987, p 21

  3. A.D. Wilson, “High Strength Weldable A710 Type Steels”, Lukens Steel Co., Coatesville, PA, June 1986

    Google Scholar 

  4. B.A. Graville,Welding of HSLA (Microalloyed) Structural Steels: Proc. Int. Conf., A.B. Rothwell and J.M. Gray, Ed., American Society for Metals, 1978, p 85

  5. T. Haze and S. Achara, inProc. Seventh Int. Conf. Offshore Mechanics and Arctic Engineering, 7–12 Feb 1988, Houston, TX, ASME, New York

  6. F.B. Pickering,High Strength Low-Alloy Steels—A Decade of Progress, Union Carbide Corp., New York, 1977, p 9

    Google Scholar 

  7. C.I. Garcia and A.J. DeArdo,Proc. World Materials Congress 1988: Microalloyed HSLA Steels, ASM International, 1988, p 291

  8. O. Kubaschewski,Iron Binary Phase Diagrams, Springer-Verlag/Heidelberg and Verlag Stahleisen mbH, Dusseldorf, 1982

    Google Scholar 

  9. I. LeMay and M.R. Krishnadev,Copper in Iron and Steel, I. LeMay and L.M. Schetky, Ed., John Wiley & Sons, 1982, p 5

  10. R.W.K. Honeycombe,Steels: Microstructure and Properties, American Society for Metals, 1982, p 76

  11. E. Hornbogen and R.C. Glenn,Trans. Met. Soc. AIME, Vol 218, 1960, p 1064

    CAS  Google Scholar 

  12. E. Hornbogen,Acta Metall, Vol 10, 1962, p 525

    Article  CAS  Google Scholar 

  13. E. Hornbogen,Trans. ASM, Vol 57, 1964, p 120

    Google Scholar 

  14. S.R. Goodman, S.S. Brenner, and J.R. Low, Jr.,Metall. Trans., Vol 4A, 1973, p 2363

    Article  Google Scholar 

  15. S.R. Goodman, S.S. Brenner, and J.R. Low, Jr.,Metall. Trans., Vol 4A, 1973, p 2371

    Article  Google Scholar 

  16. G.R. Speich and R.A. Oriani,Trans. Met. Soc. AIME, Vol 233, April, 1965, p 623

    CAS  Google Scholar 

  17. R.A. Ricks, P.R. Howell, and R.W.K. Honeycombe,Metall. Trans., Vol 10A, Aug 1979, p 1049

    Article  CAS  Google Scholar 

  18. C.I. Garcia and A.J. DeArdo,Metall, Trans., Vol 12A, March 1981, p 521

    Article  Google Scholar 

  19. D. Turnbull,Atom Movements, American Society for Metals, 1951, p 129

  20. P.G. Shewmon,Diffusion in Solids, McGraw-Hill, 1963, p 172

  21. J.I. Kim, H.J. Kim, and J.W. Morris, Jr.,Metall. Trans., Vol 15A, Dec 1984, p 2213

    Article  CAS  Google Scholar 

  22. Y.H. Kim, H.J. Kim, and J.W. Morris, Jr.,Metall. Trans., Vol 17A, July 1986, p 1157

    Article  CAS  Google Scholar 

  23. W. Steven and A.G. Haynes,Journal of Iron and Steel Institute, Vol 183, 1956, p 349

    CAS  Google Scholar 

  24. K.C. Russell and L.M. Brown,Acta Metall, Vol 20, July 1972, p 969

    Article  CAS  Google Scholar 

  25. G. Thomas, The Physical Metallurgy and Alloy Design of Dual Phase Steels,Frontiers in Materials Technologies, M.A. Meyers and O.T. Inal, Ed., Elsevier Science Publishers B.V., Amsterdam, 1985, p 89

    Google Scholar 

  26. C.W. Marshall, R.H. Hehemann, and A.R. Troiano,Trans. ASM, Vol 55, 1962, p 135

    Google Scholar 

  27. J. Kim and J.W. Morris, Jr.,Metall. Trans., Vol 11A, 1980, p 1401

    Article  CAS  Google Scholar 

  28. D. Frear and J.W. Morris, Jr.,Metall. Trans., Vol 17A, Feb 1986, p 243

    Article  CAS  Google Scholar 

  29. J.I. Kim, C.K. Syn, and J.W. Morris, Jr.,Metall. Trans., Vol 14A, Jan 1983, p 93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujahid, M., Lis, A.K., Garcia, C.I. et al. HSLA-100 steels: Influence of aging heat treatment on microstructure and properties. J. of Materi Eng and Perform 7, 247–257 (1998). https://doi.org/10.1361/105994998770347981

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994998770347981

Keywords

Navigation