Skip to main content
Log in

Characteristics of Particulate Matter Emissions for Low-Sulfur Heavy Oil Used in Low-Speed Two-Stroke Diesel Engines of Ocean-Going Ships

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In this work, particulate matter (PM) emissions from a large two-stroke, low-speed marine diesel engine were investigated when the engine was operated with low-sulfur heavy fuel oil (HFO) at various loads. Particle samples were collected in situ from the engine exhaust to determine the detailed physical and chemical properties. The nanostructure and morphology of the nanoparticles were analyzed using transmission electron microscopy images (TEM). The results show that volatile organic carbon (OC) accounts for more than 80% in the HFO particles and leads to an increase in particle size. The thermodynamic conditions of a low-speed engine favor the behavior of capturing the soluble organic components. A large number of spherical char HFO particles with aerodynamic diameters of 0.2 μm–0.5 μm and a suspected inner metal core were detected. The two peak aerodynamic diameters of the HFO nanoparticles are 15 nm and 86 nm. The morphological differences among the HFO nanoparticles in varied engine conditions represent the formation process from primary nascent particles to mature graphitized particles caused by thermodynamics. The above study will be valuable for understanding the characteristics of PM emissions from low-sulfur HFO to achieve the ship PM emissions reduction target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omstedt A., Edman M., Claremar B., et al., Modelling the contributions to marine acidification from deposited SOx, NOx, and NHx in the Baltic Sea: Past and present situations. Continental Shelf Research, 2015, 111: 234–249. DOI: https://doi.org/10.1016/j.csr.2015.08.024.

    Article  ADS  Google Scholar 

  2. Corbett J.J., Fischbeck P.S., Pandis S.N., Global nitrogen and sulfur inventories for oceangoing ships. Journal of Geophysical Research: Atmospheres, 1999, 104: 3457–3470. DOI: https://doi.org/10.1029/1998jd100040.

    Article  CAS  Google Scholar 

  3. Blasco J., Durán-Grados V., Hampel M., et al., Towards an integrated environmental risk assessment of emissions from ships’ propulsion systems. Environment International, 2014, 66: 44–47. DOI: https://doi.org/10.1016/j.envint.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  4. Liang S., Stylianou K.S., Jolliet O., et al., Consumption-based human health impacts of primary PM2.5: The hidden burden of international trade. Journal of Cleaner Production, 2017, 167: 133–139. DOI: https://doi.org/10.1016/j.jclepro.2017.08.139.

    Article  CAS  Google Scholar 

  5. Cooper D., Exhaust emissions from ships at berth. Atmospheric Environment, 2003, 37: 3817–3830. https://doi.org/10.1016/s1352-2310(03)00446-1.

    Article  CAS  ADS  Google Scholar 

  6. Kittelson D.B., Engines and nanoparticles: A review. Journal of Aerosol Science, 1998, 29: 575–588. DOI: https://doi.org/10.1016/S0021-8502(97)10037-4.

    Article  CAS  ADS  Google Scholar 

  7. Schwartz J., Laden F., Zanobetti A., The concentration-response relation between PM(2.5) and daily deaths. Environmental Health Perspectives, 2002, 110: 1025–1029. DOI: https://doi.org/10.1289/ehp.021101025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jayaweera M., Perera H., Gunawardana B., et al., Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research, 2020, 188: 109819. DOI: https://doi.org/10.1016/j.envres.2020.109819.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Corbin J.C., Mensah A.A., Pieber S.M., et al., Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine. Environmental Science & Technology, 2018, 52: 6714–6722. DOI: https://doi.org/10.1021/acs.est.8b01764.

    Article  CAS  ADS  Google Scholar 

  10. Popovicheva O., Kireeva E., Shonija N., et al., Ship particulate pollutants: Characterization in terms of environmental implication. Journal of Environmental Monitoring, 2009, 11: 2077. DOI: https://doi.org/10.1039/b908180.

    Article  CAS  PubMed  Google Scholar 

  11. Kasper A., Aufdenblatten S., Forss A., et al., Particulate emissions from a low-speed marine diesel engine. Aerosol Science and Technology, 2007, 41: 24–32. DOI: https://doi.org/10.1080/02786820601055392.

    Article  CAS  ADS  Google Scholar 

  12. Winnes H., Fridell E., Moldanová J., Effects of marine exhaust gas scrubbers on gas and particle emissions. Journal of Marine Science and Engineering, 2020, 8: 299. DOI: https://doi.org/10.3390/jmse8040299.

    Article  Google Scholar 

  13. Lehtoranta K., Aakko-Saksa P., Murtonen T., et al., Particulate mass and nonvolatile particle number emissions from marine engines using low-sulfur fuels, natural gas, or scrubbers. Environmental Science & Technology, 2019, 53: 3315–3322. DOI: https://doi.org/10.1021/acs.est.8b05555.

    Article  CAS  ADS  Google Scholar 

  14. Popovicheva O., Kireeva E., Shonija N., et al., Ship particulate pollutants: Characterization in terms of environmental implication. Journal of Environmental Monitoring, 2009, 11: 2077. DOI: https://doi.org/10.1039/b908180a.

    Article  CAS  PubMed  Google Scholar 

  15. Armas O., Gómez A., Herreros J.M., Uncertainties in the determination of particle size distributions using a mini tunnel-SMPS system during Diesel engine testing. Measurement Science and Technology, 2007, 18: 2121–2130. DOI: https://doi.org/10.1088/0957-0233/18/7/044.

    Article  CAS  ADS  Google Scholar 

  16. Zhang J., He K., Shi X., et al., Comparison of particle emissions from an engine operating on biodiesel and petroleum diesel. Fuel, 2011, 90: 2089–2097. DOI: https://doi.org/10.1016/j.fuel.2011.01.039.

    Article  CAS  Google Scholar 

  17. Moldanová J., Fridell E., Popovicheva O., et al., Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment, 2009, 43: 2632–2641. DOI: https://doi.org/10.1016/j.atmosenv.2009.02.008.

    Article  ADS  Google Scholar 

  18. Kuuluvainen H., Karjalainen P., Saukko E., et al., Nonvolatile ultrafine particles observed to form trimodal size distributions in non-road diesel engine exhaust. Aerosol Science and Technology, 2020, 54: 1345–1358. DOI: https://doi.org/10.1080/02786826.2020.1783432.

    Article  CAS  ADS  Google Scholar 

  19. Karjalainen P., Teinilä K., Kuittinen N., et al., Real-world particle emissions and secondary aerosol formation from a diesel oxidation catalyst and scrubber equipped ship operating with two fuels in a SECA area. Environmental Pollution, 2022, 292: 118278. DOI: https://doi.org/10.1016/j.envpol.2021.118278.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou S., Zhou J., Zhu Y., Chemical composition and size distribution of particulate matters from marine diesel engines with different fuel oils. Fuel, 2019, 235: 972–983. DOI: https://doi.org/10.1016/j.fuel.2018.08.080.

    Article  CAS  Google Scholar 

  21. Jiang H., Wu G., Li T., et al., Characteristics of particulate matter emissions from a low-speed marine diesel engine at various loads. Environmental Science & Technology, 2019, 53: 11552–11559. DOI: https://doi.org/10.1021/acs.est.9b02341.

    Article  CAS  ADS  Google Scholar 

  22. Chuang M.-T., Chou C.C.-K., Sopajaree K., et al., Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, 2013, 78: 72–81. DOI: https://doi.org/10.1016/j.atmosenv.2012.06.056.

    Article  CAS  ADS  Google Scholar 

  23. Zhu C.-S., Chen C.-C., Cao J.-J., et al., Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment, 2010, 44: 2668–2673. DOI: https://doi.org/10.1016/j.atmosenv.2010.04.042.

    Article  CAS  ADS  Google Scholar 

  24. Li M., Bao F., Zhang Y., et al., Role of elemental carbon in the photochemical aging of soot. Proceedings of the National Academy of Sciences, 2018, 115: 7717–7722. DOI: https://doi.org/10.1073/pnas.1804481115.

    Article  CAS  ADS  Google Scholar 

  25. Mei D., Zhu Z., Mei C., et al., Fractal morphology features and carbon component analysis of diesel particulates. Environmental Science and Pollution Research, 2019, 26: 14014–14023. DOI: https://doi.org/10.1007/s11356-019-04783-1.

    Article  CAS  PubMed  Google Scholar 

  26. Wu S., Akroyd J., Mosbach S., et al., Efficient simulation and auto-calibration of soot particle processes in Diesel engines. Applied Energy, 2020, 262: 114484. DOI: https://doi.org/10.1016/j.apenergy.2019.114484.

    Article  CAS  Google Scholar 

  27. Homann K.H., Formation of large molecules, particulates and ions in premixed hydrocarbon flames; Progress and unresolved questions. Symposium (International) on Combustion, 1985, 20: 857–870. DOI: https://doi.org/10.1016/s0082-0784(85)80575-0.

    Article  Google Scholar 

  28. Wang H., Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 2011, 33: 41–67. DOI: https://doi.org/10.1016/j.proci.2010.09.009.

    Article  ADS  Google Scholar 

  29. Frenklach M., Wang H., Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion, 1991, 23: 1559–1566. DOI: https://doi.org/10.1016/S0082-0784(06)80426-1.

    Article  Google Scholar 

  30. Wang T., Qiao X., Li T., et al., Micro morphology of soot particles sampled from high pressure jet flames of diesel from direct coal liquefaction. Journal of Thermal Science, 2022, 31(6): 2155–2170. DOI: https://doi.org/10.1007/s11630-022-1666-x.

    Article  CAS  ADS  Google Scholar 

  31. Wang T., Qiao X., Li T., et al., Micro-nano morphology parameters and mechanical properties of soot particles sampled from high pressure jet flames of diesel from direct coal liquefaction. Fuel, 2023, 332: 126084. DOI: https://doi.org/10.1016/j.fuel.2022.126084.

    Article  CAS  Google Scholar 

  32. Jung H., Kittelson D.B., Zachariah M.R., The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combustion and Flame, 2005, 142: 276–288. DOI: https://doi.org/10.1016/j.combustflame.2004.11.015.

    Article  CAS  ADS  Google Scholar 

  33. Lee D., Miller A., Kittelson D., et al., Characterization of metal-bearing diesel nanoparticles using single-particle mass spectrometry. Journal of Aerosol Science, 2006, 37: 88–110. DOI: https://doi.org/10.1016/j.jaerosci.2005.04.006.

    Article  CAS  ADS  Google Scholar 

  34. Tobias H.J., Beving D.E., Ziemann P.J., et al., Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environmental Science & Technology, 2001, 35: 2233–2243. DOI: https://doi.org/10.1021/es0016654.

    Article  CAS  ADS  Google Scholar 

  35. Sakurai H., Park K., McMurry P.H., et al., Size-dependent mixing characteristics of volatile and nonvolatile components in diesel exhaust aerosols. Environmental Science & Technology, 2003, 37: 5487–5495. DOI: https://doi.org/10.1021/es034362t.

    Article  CAS  ADS  Google Scholar 

  36. Sakurai H., Tobias H.J., Park K., et al., On-line measurements of diesel nanoparticle composition and volatility. Atmospheric Environment, 2003, 37: 1199–1210. DOI: https://doi.org/10.1016/s1352-2310(02)01017-8.

    Article  CAS  ADS  Google Scholar 

  37. Vander Wal R.L., Tomasek A.J., Soot nanostructure: dependence upon synthesis conditions. Combustion and Flame, 2004, 136: 129–140. DOI: https://doi.org/10.1016/j.combustflame.2003.09.008.

    Article  CAS  ADS  Google Scholar 

  38. Corbin J.C., Peng W., Yang J., et al., Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmospheric Environment, 2020, 220: 117030. DOI: https://doi.org/10.1016/j.atmosenv.2019.117030.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors disclosed receipt of the following financial support for the research, authorship, or publication of this article: This work was supported by the Science & Technology Commission of Shanghai Municipality and Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency under Grant 20DZ2252300.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Tie Li.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary

11630_2024_1870_MOESM1_ESM.pdf

Characteristics of Particulate Matter Emissions for Low-Sulfur Heavy Oil Used in Low-Speed Two-Stroke Diesel Engines of Ocean-Going Ships

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Ma, Q., Wei, L. et al. Characteristics of Particulate Matter Emissions for Low-Sulfur Heavy Oil Used in Low-Speed Two-Stroke Diesel Engines of Ocean-Going Ships. J. Therm. Sci. 33, 739–750 (2024). https://doi.org/10.1007/s11630-024-1870-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1870-y

Keywords

Navigation