Skip to main content
Log in

Analysis of Sinusoidal Silver Corrugation over D-Shaped Fiber Optic Plasmonic Sensor

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A D-shaped fiber optic plasmonic refractive index sensor with sinusoidal corrugation is proposed. Proposed structure is analyzed for different refractive indices of the sample at the optimized corrugation parameters. Electric field is confined to core and further coupled to metallic sinusoidal corrugation for the sample refractive ≥ 1.37. However, proper dip of the transmittance curve is achieved for the sample refractive ≥ 1.38. It is seen that the resonance wavelength, shift in resonance wavelength, bandwidth, and penetration depth of field in the sample increase whereas minimum transmittance and propagation length reduce by increasing the refractive index of the sample beyond 1.37. Further, the proposed sensor localizes the penetration depth in the sample near to 150 nm and propagation length at the metal-sample interface near to 5 µm. The proposed sensor can be used in the event of specific detection of smaller biomolecules by tuning the corrugation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Naz S, Javid I, Konwar S, Singh PK, Sahni M, Bhattacharya B (2020). Solid state gas sensor. https://doi.org/10.1016/j.matpr.2020.11.1031

    Article  Google Scholar 

  2. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. https://doi.org/10.1021/cr068107d

    Article  CAS  PubMed  Google Scholar 

  3. Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications, J Sensors 2009. https://doi.org/10.1155/2009/979761

  4. Aruna Gandhi MS, Chu S, Senthilnathan K, Babu PR, Nakkeeran K, Li Q (2019) Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl Sci 9. https://doi.org/10.3390/app9050949

  5. Chen X, Zhu H (2011) 3 . 01 Catalysis by supported gold nanoparticles

  6. Liu L, Liu Z, Zhang Y, Liu S (2021) Side-polished D-type fiber SPR sensor for RI sensing with temperature compensation. IEEE Sens J 21:16621–16628. https://doi.org/10.1109/JSEN.2021.3080290

    Article  ADS  CAS  Google Scholar 

  7. Monfared YE (2020) Overview of recent advances in the design of plasmonic fiber-optic biosensors. Biosensors 10. https://doi.org/10.3390/BIOS10070077

  8. Kadhim RA, Yuan L, Xu H, Wu J, Wang Z (2020) Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe2O3 grating. IEEE Sens J 20:9816–9824. https://doi.org/10.1109/JSEN.2020.2992854

    Article  ADS  CAS  Google Scholar 

  9. Haque E, Al Noman A, Hossain MA, Hoang Hai N, Namihira Y, Ahmed F (2021) Highly sensitive D-shaped plasmonic refractive index sensor for a broad range of refractive index detection, IEEE Photonics J 13. https://doi.org/10.1109/JPHOT.2021.3055234

  10. Kumar S, Maurya JB, Roumi B, Abdi-Ghaleh R, Prajapati YK (2023) Design and analysis of D-shaped fiber optic plasmonic sensors using planar and grating structure of silver and gold. Appl Opt 62:E130–E136. https://doi.org/10.1364/AO.481145

    Article  CAS  PubMed  Google Scholar 

  11. Zhou H, Du X, Zhang Z (2021) Electrochemical sensors for detection of markers on tumor cells. Int J Mol Sci 22. https://doi.org/10.3390/ijms22158184

  12. Schaaij-Visser TBM, De Wit M, Lam SW, Jiménez CR (1834) The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. Biochim Biophys Acta - Proteins Proteomics 2013:2242–2258. https://doi.org/10.1016/j.bbapap.2013.01.029

    Article  CAS  Google Scholar 

  13. Yasli A (2021) Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16:1605–1612. https://doi.org/10.1007/s11468-021-01425-6

    Article  CAS  Google Scholar 

  14. D’Cruz RJ, Currier AW, Sampson VB (2020) Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Front Cell Dev Biol 8:468. https://doi.org/10.3389/fcell.2020.00468

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zacco G, Romanato F, Sonato A, Sammito D, Ruffato G, Morpurgo M, Silvestri D, Carli M, Schiavuta P, Brusatin G (2011) Sinusoidal plasmonic crystals for bio-detection sensors. Microelectron Eng 88:1898–1901. https://doi.org/10.1016/j.mee.2011.01.031

    Article  CAS  Google Scholar 

  16. Cao J, Sun Y, Zhu H, Cao M, Zhang X, Gao S (2018) Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film. Plasmonics 13:1549–1554. https://doi.org/10.1007/s11468-017-0663-5

    Article  CAS  Google Scholar 

  17. Wang Q, Zheng Y, Yu C, Chen X, Wang E, Long S, Zhu H, Gao S, Cao J (2020) Fabrication of silver-silicon gratings for surface plasmon excitation using nanosecond laser interference lithography. Plasmonics 15:1639–1644. https://doi.org/10.1007/s11468-020-01183-x

    Article  CAS  Google Scholar 

  18. Kaur B, Kumar S, Kaushik BK (2021) 2D materials based fiber optic SPR biosensor for cancer detection at 1550 nm. IEEE Sens J 21:23957–23964. https://doi.org/10.1109/JSEN.2021.3110967

    Article  ADS  CAS  Google Scholar 

  19. Meradi KA, Tayeboun F, Guerinik A, Zaky ZA, Aly AH (2022) Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt Quantum Electron 54:1–11. https://doi.org/10.1007/s11082-021-03504-8

    Article  CAS  Google Scholar 

  20. Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Opt Express 15:8163. https://doi.org/10.1364/oe.15.008163

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jaiswal SK, Maurya JB, Prajapati YK (2022) Field-dependent performance parameters of a plasmonic structure: an analysis of penetration depth and propagation length. J Opt Soc Am B 39. https://doi.org/10.1364/josab.443940

  22. Zhang Y, Chen Y, Yang F, Hu S, Luo Y, Dong J, Zhu W, Lu H, Guan H, Zhong Y, Yu J, Zhang J, Chen Z (2019) Sensitivity-enhanced fiber plasmonic sensor utilizing molybdenum disulfide nanosheets. J Phys Chem C 123:10536–10543. https://doi.org/10.1021/acs.jpcc.9b00107

    Article  CAS  Google Scholar 

  23. Al-Qazwini Y, Noor ASM, Arasu PT, Sadrolhosseini AR (2013) Investigation of the performance of an SPR-based optical fiber sensor using finite-difference time domain. Curr Appl Phys 13:1354–1358. https://doi.org/10.1016/j.cap.2013.04.011

    Article  ADS  Google Scholar 

  24. Zainuddin NAM, Ariannejad MM, Arasu PT, Harun SW, Zakaria R (2019) Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results Phys 13:102255. https://doi.org/10.1016/j.rinp.2019.102255

    Article  Google Scholar 

  25. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors Actuators B Chem 107:40–46

    Article  CAS  Google Scholar 

  26. Maurya JB, Prajapati YK (2017) A novel method to calculate beam width of SPR reflectance curve: a comparative analysis. IEEE Sensors Lett

  27. Hu C, Ma X, Wang C, Zhou S, Wu H, Sun K (2021) High-quality rapid fabrication method of a D-shaped optical fiber based on a CO 2 laser. Opt Mater Express 11:2025. https://doi.org/10.1364/ome.428792

    Article  ADS  CAS  Google Scholar 

  28. Jilani A, Abdel-wahab MS, Hammad AH (2017) Advance deposition techniques for thin film and coating. Mod Technol Creat Thin-Film Syst Coatings. https://doi.org/10.5772/65702

    Article  Google Scholar 

  29. Imas JJ, Zamarreño CR, Del Villar I, Matías IR (2021) Optimization of fiber bragg gratings inscribed in thin films deposited on d-shaped optical fibers. Sensors 21:1–14. https://doi.org/10.3390/s21124056

    Article  CAS  Google Scholar 

  30. Zakaria R, Kam W, Ong YS, Yusoff SFAZ, Ahmad H, Mohammed WS (2017) Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance. J Mod Opt 64:1443–1449. https://doi.org/10.1080/09500340.2017.1293858

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by Science & Engineering Research Board (SERB), Department of Science & Technology, Government of India [FILE NO. SRG/2021/001744].

Author information

Authors and Affiliations

Authors

Contributions

Shambhu Kumar has produced the results and prepared the draft of the manuscript. Jitendra Bahadur Maurya has finalized manuscript.

Corresponding author

Correspondence to Jitendra B. Maurya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Maurya, J.B. Analysis of Sinusoidal Silver Corrugation over D-Shaped Fiber Optic Plasmonic Sensor. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02247-y

Keywords

Navigation