Skip to main content
Log in

Fabrication of Silver-Silicon Gratings for Surface Plasmon Excitation Using Nanosecond Laser Interference Lithography

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We introduce a new two-step method to fabricate silver-silicon gratings that can excite surface plasmons efficiently. The grating structure was firstly created on a flat silicon substrate by single-pulse nanosecond laser interference lithography. Next, a silver layer of 50 nm was evaporated on the silicon substrate. With proper laser energy, a silver-silicon grating with a period of 1120 nm and depth of 18 nm was successfully fabricated. This grating can produce high-quality surface plasmon resonance (SPR) peaks at various incident angles. Moreover, a SPR sensor was experimentally demonstrated based on the silver-silicon grating, which had high sensitivity of 961.5 nm/RIU and figure of merit of 60. Our method is an efficient way to fabricate periodically nanostructured metals at high speed and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 86(6):1114–1117

    Google Scholar 

  2. Inchaussandague ME, Gigli ML, O’Donnell KA, Méndez ER, Torre R, Valencia CI (2017) Second-harmonic generation from plasmon polariton excitation on silver diffraction gratings: comparisons of theory and experiment. J Opt Soc Am B 34(1):27–37

    Article  CAS  Google Scholar 

  3. Raether H (1988) Surface Plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Book  Google Scholar 

  4. Cao J, Kong Y, Gao S, Liu C (2018) Plasmon resonance enhanced mid-infrared generation by graphene on gold gratings through difference frequency mixing. Opt Commun 406:183–187

    Article  CAS  Google Scholar 

  5. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  6. McCrindle IJH, Grant J, Drysdale TD, Cumming DRS (2014) Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber. Adv Optic Mater 2(2):149–153

    Article  CAS  Google Scholar 

  7. Wen X, Li G, Zhang J, Zhang Q, Peng B, Wong LM, Wang S, Xiong Q (2014) Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale 6(1):132–139

    Article  CAS  Google Scholar 

  8. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54(1–2):3–15

    Article  CAS  Google Scholar 

  9. Cullen DC, Brown RG, Lowe CR (1987) Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3(4):211–225

    Article  CAS  Google Scholar 

  10. Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot JP, Boukherroub R, Szunerits S (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15(5):208–224

    Article  CAS  Google Scholar 

  11. Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5(4):571–606

    Article  CAS  Google Scholar 

  12. Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal AE, Ayas S, Uludag Y, Elbuken C, Dana A (2017) A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B Chem 239:571–577

    Article  CAS  Google Scholar 

  13. Sun Y, Sun S, Wu M, Gao S, Cao J (2018) Refractive index sensing using the metal layer in DVD-R discs. RSC Adv 8(48):27423–27428

    Article  CAS  Google Scholar 

  14. Cao J, Sun Y, Kong Y, Qian W (2019) The sensitivity of grating-based SPR sensors with wavelength interrogation. Sensors 19(2):405

    Article  CAS  Google Scholar 

  15. Cao J, Sun Y, Zhu H, Cao M, Zhang X, Gao S (2018) Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film. Plasmonics 13(5):1549–1554

    Article  CAS  Google Scholar 

  16. Jourlin Y, Tonchev S, Tishchenko AV (2009) Spatially and polarization resolved plasmon mediated transmission through continuous metal films. Opt Express 17(14):12155–12166

    Article  CAS  Google Scholar 

  17. Arriola A, Rodriguez A, Perez N, Tavera T, Withford MJ, Fuerbach A, Olaizola SM (2012) Fabrication of high quality sub-micron au gratings over large areas with pulsed laser interference lithography for SPR sensors. Opt Mater Express 2(11):1571–1579

    Article  CAS  Google Scholar 

  18. Lin Y, Zhai T, Zhang X (2014) Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse. Opt Express 22(7):8396–8404

    Article  CAS  Google Scholar 

  19. Zhao L, Wang Z, Zhang J, Yu M, Li S, Li D, Yue Y (2015) Effects of laser fluence on silicon modification by four-beam laser interference. J Appl Phys 118(23):233106

    Article  CAS  Google Scholar 

  20. Gedvilas M, Indrišiūnas S, Voisiat B, Stankevičius E, Selskis A, Račiukaitis G (2018) Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon. Phys Chem Chem Phys 20(17):12166–12174

    Article  CAS  Google Scholar 

  21. Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A (2009) Tuning optical discs for plasmonic applications. Plasmonics 4(3):237–243

    Article  Google Scholar 

  22. Sharma AK, Pandey AK (2019) Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band. J Opt Soc Am B 36(8):F25

    Article  CAS  Google Scholar 

  23. Ferreiro-Vila E, González-Díaz JB, Fermento R, González MU, García-Martín A, García-Martín JM, Cebollada A, Armelles G, Meneses-Rodríguez D, Sandoval EM (2009) Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures. Phys Rev B 80(12):125132

    Article  CAS  Google Scholar 

Download references

Funding

This study received supports from the National Natural Science Foundation of China (61605067), Fundamental Research Funds for the Central Universities (JUSRP51721B), and Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology (BM2014402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Cao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zheng, Y., Yu, C. et al. Fabrication of Silver-Silicon Gratings for Surface Plasmon Excitation Using Nanosecond Laser Interference Lithography. Plasmonics 15, 1639–1644 (2020). https://doi.org/10.1007/s11468-020-01183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01183-x

Keywords

Navigation