Skip to main content
Log in

Laser-induced breakdown spectroscopy in Asia

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser- Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  2. F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16, 59 (1962)

    Google Scholar 

  3. T. H. Maiman, Stimulated optical radiation in ruby, Nature 187(4736), 493 (1960)

    Article  ADS  Google Scholar 

  4. D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis, in Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006

    Book  Google Scholar 

  5. Y. Deguchi, Industrial Applications of Laser Diagnostics, Taylor & Francis Group, CRC Press, 2011

    Book  Google Scholar 

  6. G. Galbács, A critical review of recent progress in analytical laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 407(25), 7537 (2015)

    Article  Google Scholar 

  7. D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: stillchallenging issues within the analytical plasma community, Appl. Spectrosc. 64(12), 335A (2010)

    Article  ADS  Google Scholar 

  8. D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)

    ADS  Google Scholar 

  9. L. J. Radziemski and D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, 2006

    Google Scholar 

  10. R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Springer, 2012

    Book  Google Scholar 

  11. Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. Technol. 17(8), 617 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J.D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)

    Article  Google Scholar 

  13. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    Article  Google Scholar 

  14. J. Yu and R. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy(LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 2 (2012)

    MathSciNet  Google Scholar 

  15. L. Zhang, S. Kashiwakura, and K. Wagatsuma, Emission characteristics of copper ionic lines from the 3d95s-3d94p transition in a low-pressure laser-induced plasma, Key Eng. Mater. 508, 331 (2012)

    Article  Google Scholar 

  16. X. H. Wang, S. D. Zhang, X. L. Cheng, E. Y. Zhu, W. Hang, and B. L. Huang, Ion kinetic energy distributions in laser-induced plasma, Spectrochim. Acta B 99, 101 (2014)

    Article  ADS  Google Scholar 

  17. S. D. Zhang, X. H. Wang, M. H. He, Y. B. Jiang, B. C. Zhang, W. Hang, and B. L. Huang, Laser-induced plasma temperature, Spectrochim. Acta B 97, 13 (2014)

    Article  ADS  Google Scholar 

  18. S. D. Zhang, B. C. Zhang, W. Hang, and B. L. Huang, Chemometrics and theoretical approaches for evaluation of matrix effect in laser ablation and ionization of metal samples, Spectrochim. Acta B 107, 17 (2015)

    Article  ADS  Google Scholar 

  19. S. Hafeez, N. M. Shaikh, and M. A. Baig, Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd: YAG laser, Laser Part. Beams 26(01), 41 (2008)

    Google Scholar 

  20. N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd: YAG laser, Eur. Phys. J. D 44(2), 371 (2007)

    ADS  Google Scholar 

  21. N. M. Shaikh, S. Hafeez, B. Rashid, S. Mahmood, and M. A. Baig, Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd:YAG laser, J. Phys. D 39(20), 4377 (2006)

    ADS  Google Scholar 

  22. N. M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil, and M. A. Baig, Measurement of electron density and temperature of a laser-induced zinc plasma, J. Phys. D 39(7), 1384 (2006)

    Article  Google Scholar 

  23. X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, Comparison of nanosecond laser produced brass plasmas under low and moderate pressure air, J. Phys. D 46(47), 475207 (2013)

    Article  ADS  Google Scholar 

  24. X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere, J. Appl. Phys. 113(24), 243304 (2013)

    Article  ADS  Google Scholar 

  25. W. F. Wei, J. Wu, X. W. Li, S. L. Jia, and A. C. Qiu, Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy, J. Appl. Phys. 114(11), 113304 (2013)

    Article  ADS  Google Scholar 

  26. J. Wu, X. W. Li, W. F. Wei, S. L. Jia, and A. C. Qiu, Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics, Phys. Plasmas 20(11), 113512 (2013)

    Article  ADS  Google Scholar 

  27. J. Wu, W. F. Wei, X. W. Li, S. L. Jia, and A. C. Qiu, Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion, Appl. Phys. Lett. 102(16), 164104 (2013)

    Article  ADS  Google Scholar 

  28. Y. Iida, Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochim. Acta B 45(12), 1353 (1990)

    Article  ADS  Google Scholar 

  29. Y. Iida, Laser vaporization of solid samples into a hollow-cathode discharge for atomic emission spectrometry, Spectrochim. Acta B At. 45(4–5), 427 (1990)

    Article  ADS  Google Scholar 

  30. N. Farid, S. Bashir, and K. Mahmood, Effect of ambient gas conditions on laser-induced copper plasma and surface morphology, Phys. Scr. 85(1), 015702 (2012)

    Article  ADS  Google Scholar 

  31. H. M. Hou, Y. Li, Y. Tian, Z. H. Yu, and R. Zheng, Plasma condensation effect induced by ambient pressure in laser-induced breakdown spectroscopy, Appl. Phys. Express 7(3), 032402 (2014)

    Article  ADS  Google Scholar 

  32. H. M. Hou, Y. Tian, Y. Li, and R. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. At. Spectrom. 29(1), 169 (2014)

    Article  Google Scholar 

  33. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation, Appl. Spectrosc. 51(7), 959 (1997)

    Article  ADS  Google Scholar 

  34. S. H. Tavassoli, I. V. Cravetchi, and R. Fedosejevs, Spatial and temporal evolution of laser-generated microplasmas, IEEE Trans. Plasma Sci. 34(6), 2594 (2006)

    Article  ADS  Google Scholar 

  35. F. Rezaei and S. H. Tavassoli, Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas, Spectrochim. Acta B 78, 29 (2012)

    Article  ADS  Google Scholar 

  36. F. Rezaei and S. H. Tavassoli, Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma, Appl. Phys. B 120(3), 563 (2015)

    Article  ADS  Google Scholar 

  37. S. Sunku, E. N. Rao, M. K. Gundawar, S. P. Tewari, and S. V. Rao, Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro- 1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy, Spectrochim. Acta B 87, 121 (2013)

    Google Scholar 

  38. S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX, Spectrochim. Acta B 79–80, 31 (2013)

    Article  Google Scholar 

  39. M. Ramli, N. Idris, K. Fukumoto, H. Niki, F. Sakan, T. Maruyama, K. H. Kurniawan, T. J. Lie, and K. Kagawa, Hydrogen analysis in solid samples by utilizing He metastable atoms induced by TEA CO2 laser plasma in He gas at 1 atm, Spectrochim. Acta B 62(12), 1379 (2007)

    Article  ADS  Google Scholar 

  40. M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, and K. Kagawa, New method of laser plasma spectroscopy for metal samples using metastable He atoms induced by transversely excited atmospheric-pressure CO2 laser in He gas at 1 atm, Jpn. J. Appl. Phys. 47(3), 1595 (2008)

    Article  ADS  Google Scholar 

  41. Z. S. Lie, A. Khumaeni, K. Kurihara, K. H. Kurniawan, Y. I. Lee, K. I. Fukumoto, K. Kagawa, and H. Niki, Excitation mechanism of H, He, C, and F atoms in metal-assisted atmospheric helium gas plasma induced by transversely excited atmospheric-pressure CO2 laser bombardment, Jpn. J. Appl. Phys. 50, 122701 (2011)

    ADS  Google Scholar 

  42. N. Idris, K. Lahna, S. N. Abdulmadjid, M. Ramli, H. Suyanto, A. M. Marpaung, M. Pardede, E. Jobiliong, R. Hedwig, M. M. Suliyanti, Z. S. Lie, T. J. Lie, K. Kagawa, M. O. Tjia, and K. H. Kurniawan, Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement, J. Appl. Phys. 117(22), 223301 (2015)

    Article  ADS  Google Scholar 

  43. Z. Z. Wang, Y. Deguchi, J. J. Yan, and J. P. Liu, Comparison of the detection characteristics of trace species using laser-induced breakdown spectroscopy and laser breakdown time-of-flight mass spectrometry, Sensors 15(3), 5982 (2015)

    Article  Google Scholar 

  44. Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Enhancement of laser-induced breakdown spectroscopy (LIBS) detection limit using a low-pressure and short-pulse laser-induced plasma process, Appl. Spectrosc. 67(11), 1242 (2013)

    Article  ADS  Google Scholar 

  45. X. B. Zhang, Y. Deguchi, Z. Z. Wang, J. J. Yan, and J. P. Liu, Sensitive detection of iodine by low pressure and short pulse laser-induced breakdown spectroscopy (LIBS), J. Anal. At. Spectrom. 29(6), 1082 (2014)

    Article  Google Scholar 

  46. X. B. Zhang, Y. Deguchi, and J. P. Liu, Numerical simulation of laser induced weakly ionized helium plasma process by lattice Boltzmann method, Jpn. J. Appl. Phys. 51(1S), 01AA04 (2012)

    Article  Google Scholar 

  47. Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys. 7(6), 714 (2012)

    Article  Google Scholar 

  48. S. N. Abdulmadjid, M. M. Suliyanti, K. H. Kurniawan, T. J. Lie, M. Pardede, R. Hedwig, K. Kagawa, and M. O. Tjia, An improved approach for hydrogen analysis in metal samples using single laser-induced gas plasma and target plasma at helium atmospheric pressure, Appl. Phys. B 82(1), 161 (2006)

    Article  ADS  Google Scholar 

  49. R. Hedwig, Z. S. Lie, K. H. Kurniawan, A. N. Chumakov, K. Kagawa, and M. O. Tjia, Toward quantitative deuterium analysis with laser-induced breakdown spectroscopy using atmospheric-pressure helium gas, J. Appl. Phys. 107(2), 023301 (2010)

    Article  ADS  Google Scholar 

  50. K. H. Kurniawan, T. J. Lie, M. M. Suliyanti, R. Hedwig, M. Pardede, M. Ramli, H. Niki, S. N. Abdulmadjid, N. Idris, K. Lahna, Y. Kusumoto, K. Kagawa, and M. O. Tjia, The role of He in enhancing the intensity and lifetime of H and D emissions from laser-induced atmospheric-pressure plasma, J. Appl. Phys. 105(10), 103303 (2009)

    Article  ADS  Google Scholar 

  51. A. M. Marpaung, Z. S. Lie, H. Niki, K. Kagawa, K. I. Fukumoto, M. Ramli, S. N. Abdulmadjid, N. Idris, R. Hedwig, M. O. Tjia, M. Pardede, M. M. Suliyanti, E. Jobiliong, and K. H. Kurniawan, Deuterium analysis in zircaloy using ps laser-induced low pressure plasma, J. Appl. Phys. 110(6), 063301 (2011)

    Article  ADS  Google Scholar 

  52. M. Pardede, T. J. Lie, K. H. Kurniawan, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, Crater effects on H and D emission from laser induced low-pressure helium plasma, J. Appl. Phys. 106(6), 063303 (2009)

    Article  ADS  Google Scholar 

  53. M. Ramli, K. I. Fukumoto, H. Niki, S. N. Abdulmadjid, N. Idris, T. Maruyama, K. Kagawa, M. O. Tjia, M. Pardede, K. H. Kurniawan, R. Hedwig, Z. S. Lie, T. J. Lie, and D. P. Kurniawan, Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas, Appl. Opt. 46(34), 8298 (2007)

    Article  ADS  Google Scholar 

  54. R. Ahmed and M. A. Baig, A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106(3), 033307 (2009)

    Article  ADS  Google Scholar 

  55. Z. S. Lie, M. O. Tjia, R. Hedwig, M. M. Suliyanti, S. N. Abdulmadjid, N. Idris, A. M. Marpaung, M. Pardede, E. Jobiliong, M. Ramli, H. Suyanto, K. Fukumoto, K. Kagawa, and K. H. Kurniawan, Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma, J. Appl. Phys. 113(5), 053301 (2013)

    Article  ADS  Google Scholar 

  56. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)

    Article  ADS  Google Scholar 

  57. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)

    Article  ADS  Google Scholar 

  58. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)

    Article  ADS  Google Scholar 

  59. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)

    Article  ADS  Google Scholar 

  60. M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by femto- and nano-second laser pulses, Appl. Phys, A 101(3), 545 (2010)

    Article  ADS  Google Scholar 

  61. D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J. Appl. Phys. 61(3), 30802 (2013)

    Article  ADS  Google Scholar 

  62. S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem. 72(9), 2087 (2000)

    Article  Google Scholar 

  63. S. L. Liu and N. H. Cheung, Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett. 81(27), 5114 (2002)

    Article  ADS  Google Scholar 

  64. S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B 58(9), 1613 (2003)

    Article  ADS  Google Scholar 

  65. W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B 64(4), 315 (2009)

    Article  ADS  Google Scholar 

  66. X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)

    Article  Google Scholar 

  67. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)

    Article  ADS  Google Scholar 

  68. W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)

    Article  Google Scholar 

  69. A. Khumaeni, T. Motonobu, A. Katsuaki, M. Masabumi, and W. Ikuo, Enhancement of LIBS emission using antenna-coupled microwave, Opt. Express 21(24), 29755 (2013)

    Article  ADS  Google Scholar 

  70. L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  71. B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)

    Article  Google Scholar 

  72. B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)

    Article  ADS  Google Scholar 

  73. J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B 65(7), 549 (2010)

    Article  ADS  Google Scholar 

  74. L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)

    Article  Google Scholar 

  75. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)

    Article  ADS  Google Scholar 

  76. X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)

  77. Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)

    Article  Google Scholar 

  78. Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)

    Article  Google Scholar 

  79. Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom 26, 2302 (2011)

    Article  Google Scholar 

  80. Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)

    Article  Google Scholar 

  81. X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)

    Article  ADS  Google Scholar 

  82. J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67 (3), 291 (2013)

    Article  ADS  Google Scholar 

  83. J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400 (10), 3261 (2011)

    Article  Google Scholar 

  84. Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)

    Article  Google Scholar 

  85. T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)

    Article  Google Scholar 

  86. T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)

    Article  Google Scholar 

  87. X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)

    Article  ADS  Google Scholar 

  88. A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. Mao, and R. E. Russo, Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy, Spectrochim. Acta B 108, 8 (2015)

    Article  ADS  Google Scholar 

  89. Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B 102, 52 (2014)

    Article  ADS  Google Scholar 

  90. J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)

    Article  ADS  Google Scholar 

  91. L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)

    Article  Google Scholar 

  92. T. Takahashi, B. Thornton, K. Ohki, and T. Sakka, Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation, Spectrochim. Acta B 111, 8 (2015)

    Article  ADS  Google Scholar 

  93. M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)

    Article  Google Scholar 

  94. S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)

    Article  ADS  Google Scholar 

  95. S. C. Yao, J. D. Lu, J. Li, K. Chen, J. Y. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)

    Article  Google Scholar 

  96. S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)

    Article  Google Scholar 

  97. J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: Correlation analysis with plasma-induced current versus continuum background, J. Anal. At. Spectrom. 20(1), 53 (2005)

    Article  Google Scholar 

  98. T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)

    Article  Google Scholar 

  99. J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy, Opt. Laser Technol. 41(8), 907 (2009)

    Article  ADS  Google Scholar 

  100. L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)

    Article  Google Scholar 

  101. Z. Z. Wang, Y. Deguchi, H. Watanabe, R. Kurose, J. J. Yan, and J. P. Liu, Improvement on quantitative measurement of fly ash contents using laser-induced breakdown spectroscopy, J. Flow Control Meas. Visualization 3(1), 10 (2015)

    Article  Google Scholar 

  102. Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 130 (2013)

    Article  ADS  Google Scholar 

  103. Z. Z. Wang, Y. Deguchi, M. Kuwahara, X. B. Zhang, J. J. Yan, and J. P. Liu, Sensitive measurement of trace mercury using low pressure laser-induced plasma, Jpn. J. Appl. Phys. 52(11S), 11NC05 (2013)

    Article  Google Scholar 

  104. R. Yoshiie, Y. Yamamoto, S. Uemiya, S. Kambara, and H. Moritomi, Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas, Powder Technol. 180(1–2), 135 (2008)

    Article  Google Scholar 

  105. A. Khumaeni, K. Kurihara, Z. S. Lie, K. Kagawa, and Y. I. Lee, Analysis of sodium aerosol using transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy, Curr. Appl. Phys. 14(3), 451 (2014)

    Article  ADS  Google Scholar 

  106. H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution, Opt. Express 22(20), 24478 (2014)

    Article  ADS  Google Scholar 

  107. S. Eto, J. Tani, K. Shirai, and T. Fujii, Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 74 (2013)

    Article  ADS  Google Scholar 

  108. R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak, Spectrochim. Acta B 87, 147 (2013)

    Article  ADS  Google Scholar 

  109. R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater. 438, S1168 (2013)

    Article  ADS  Google Scholar 

  110. R. Hai, X. W. Wu, Y. Xin, P. Liu, D. Wu, H. B. Ding, Y. Zhou, L. Z. Cai, and L. W. Yan, Use of dual-pulse laserinduced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2014)

    Article  ADS  Google Scholar 

  111. Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des. 88(9-10), 1813 (2013)

    Article  Google Scholar 

  112. S. J. Qiao, Y. Ding, D. Tian, L. Yao, and G. Yang, A review of laser-induced breakdown spectroscopy for analysis of geological materials, Appl. Spectrosc. Rev. 50 (1), 1 (2015)

    Article  ADS  Google Scholar 

  113. T. Hussain, and M. A. Gondal, Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis, J. Phys. Conf. Ser. 439, 012050 (2013)

    Article  ADS  Google Scholar 

  114. L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)

    Article  Google Scholar 

  115. T. Kim, C. T. Lin, and Y. Yoon, Compositional mapping by laser-induced breakdown spectroscopy, J. Phys. Chem. B 102(22), 4284 (1998)

    Article  Google Scholar 

  116. C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Quantitative analysis of phosphorus in steel using laser-induced breakdown spectroscopy in air atmosphere, J. Anal. At. Spectrom. 29(8), 1432 (2014)

    Article  Google Scholar 

  117. S. Kashiwakura and K. Wagatsuma, Rapid sorting of stainless steels by open-air laser-induced breakdown spectroscopy with detecting chromium, nickel, and molybdenum, ISIJ Int. 55(11), 2391 (2015)

    Article  Google Scholar 

  118. S. Kashiwakura, and K. Wagatsuma, Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres, Anal. Sci. 29(12), 1159 (2013)

    Article  Google Scholar 

  119. Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)

    Article  Google Scholar 

  120. T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)

    Article  Google Scholar 

  121. S. C. Yao, M. R. Dong, J. D. Lu, J. Li, and X. Dong, Correlation between grade of pearlite spheroidization and laser induced spectra, Laser Phys. 23(12), 125702 (2013)

    Article  ADS  Google Scholar 

  122. S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci. 257(7), 3103 (2011)

    Article  ADS  Google Scholar 

  123. J. Li, J. D. Lu, Y. Dai, M. R. Dong, W. L. Zhong, and S. C. Yao, Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma, Appl. Surf. Sci. 346, 302 (2015)

    Article  ADS  Google Scholar 

  124. K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B 65(5), 420 (2010)

    Article  ADS  Google Scholar 

  125. X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)

    ADS  Google Scholar 

  126. K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)

    Article  Google Scholar 

  127. W. A. Farooq, W. Tawfik, F. N. Al-Mutairi, and Z. A. Alahmed, Qualitative analysis and plasma characteristics of soil from a desert area using LIBS technique, J. Opt. Soc. Korea 17(6), 548 (2013)

    Article  Google Scholar 

  128. G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J. Appl. Phys. 55 (3), 30701 (2011)

    Article  ADS  Google Scholar 

  129. T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses, Opt. Lett. 31(23), 3456 (2006)

    Article  ADS  Google Scholar 

  130. M. M. Suliyanti, M. Pardede, T. J. Lie, K. H. Kurniawan, A. Khumaeni, K. Kagawa, M. O. Tjia, and Y. I. Lee, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber, J. Korean Phys. Soc. 58(5), 1129 (2011)

    Article  Google Scholar 

  131. L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B 111(1), 45 (2013)

    Article  ADS  Google Scholar 

  132. M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt. 51(10), 1552 (2012)

    Article  ADS  Google Scholar 

  133. H. Oguchi, T. Sakka, and Y. H. Ogata, Effects of pulse duration upon the plume formation by the laser ablation of Cu in water, J. Appl. Phys. 102(2), 023306 (2007)

    Article  ADS  Google Scholar 

  134. T. Sakka, S. Masai, K. Fukami, and Y. H. Ogata, Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid, Spectrochim. Acta B 64(10), 981 (2009)

    Article  ADS  Google Scholar 

  135. T. Sakka, A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, and B. Thornton, Effects of pulse width on nascent laser-induced bubbles for underwater laserinduced breakdown spectroscopy, Spectrochim. Acta B 97, 94 (2014)

    Article  ADS  Google Scholar 

  136. A. Matsumoto, A. Tamura, K. Fukami, Y. H. Ogata, and T. Sakka, Two-dimensional space-resolved emission spectroscopy of laser ablation plasma in water, J. Appl. Phys. 113(5), 053302 (2013)

    Article  ADS  Google Scholar 

  137. A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water, Appl. Phys. A 112(1), 209 (2013)

    Article  ADS  Google Scholar 

  138. K. H. Kurniawan, M. Pardede, R. Hedwig, S. N. Abdulmadjid, K. Lahna, N. Idris, E. Jobiliong, H. Suyanto, M. M. Suliyanti, M. O. Tjia, T. J. Lie, Z. S. Lie, D. P. Kurniawan, and K. Kagawa, Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas, Appl. Opt. 54(25), 7592 (2015)

    Article  ADS  Google Scholar 

  139. Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultrasensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom. 23(6), 871 (2008)

    Article  Google Scholar 

  140. Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B 63(1), 64 (2008)

    Article  ADS  Google Scholar 

  141. D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laserinduced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent, Anal. Methods 4(3), 819 (2012)

    Article  Google Scholar 

  142. Q. Y. Lin, Z. M. Wei, M. J. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)

    Article  Google Scholar 

  143. L. J. Zheng, S. Niu, A. Q. Khan, S. Yuan, J. Yu, and H. P. Zeng, Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target, Spectrochim. Acta B 118, 66 (2016)

    Article  ADS  Google Scholar 

  144. J. S. Xiu, S. L. Zhong, H. M. Hou, Y. Lu, and R. Zheng, Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates, Appl. Spectrosc. 68(9), 1039 (2014)

    Article  ADS  Google Scholar 

  145. S. L. Zhong, R. Zheng, Y. Lu, K. Cheng, and J. S. Xiu, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)

    Article  ADS  Google Scholar 

  146. Z. Z. Wang, J. J. Yan, J. P. Liu, Y. Deguchi, S. Katsumori, and A. Ikutomo, Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy, Spectrochim. Acta B 114, 74 (2015)

    Article  ADS  Google Scholar 

  147. X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: Plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc. 57(5), 588 (2003)

    Article  ADS  Google Scholar 

  148. X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett. 83(16), 3416 (2003)

    Article  ADS  Google Scholar 

  149. T. Takahashi, B. Thornton, and T. Ura, Investigation of influence of hydrostatic pressure on double-pulse laserinduced breakdown spectroscopy for detection of Cu and Zn in submerged solids, Appl. Phys. Express 6(4), 042403 (2013)

    Article  ADS  Google Scholar 

  150. B. Thornton, T. Sakka, T. Masamura, A. Tamura, T. Takahashi, and A. Matsumoto, Long-duration nanosecond single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures, Spectrochim. Acta B 97, 7 (2014)

    Article  ADS  Google Scholar 

  151. B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, and A. Matsumoto, Spectroscopic measurements of solids immersed in water at high pressure using a long-duration nanosecond laser pulse, Appl. Phys. Express 6(8), 082401 (2013)

    Article  ADS  Google Scholar 

  152. B. Thornton, T. Takahashi, T. Ura, and T. Sakka, Cavity formation and material ablation for single-pulse laser-ablated solids immersed in water at high pressure, Appl. Phys. Express 5(10), 102402 (2012)

    Article  ADS  Google Scholar 

  153. Y. L. Yu, W. D. Zhou, and X. J. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)

    Article  ADS  Google Scholar 

  154. M. Bahreini, Z. Hosseinimakarem, and S. H. Tavassoli, A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy, J. Appl. Phys. 112 (5), 054701 (2012)

    Article  ADS  Google Scholar 

  155. Z. Hosseinimakarem and S. H. Tavassoli, Analysis of human nails by laser-induced breakdown spectroscopy, J. Biomed. Opt. 16(5), 057002 (2011)

    Article  ADS  Google Scholar 

  156. M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails, J. Biomed. Opt. 18(10), 107006 (2013)

    Article  Google Scholar 

  157. M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)

    Article  ADS  Google Scholar 

  158. W. A. Farooq, W. Tawfik, S. B. Qasim, A. S. Aldwayyan, M. Atif, K. Ahmad, and M. S. Al-Salhi, Qualitative analysis of dental nano-composite restorative material using laser induced breakdown spectroscopy and EDS analysis, 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), 202

  159. S. G. Kim and S. H. Jeong, Effects of temperaturedependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy, Lasers Med. Sci. 29(2), 637 (2014)

    Article  Google Scholar 

  160. J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett. 45(13), 1936 (2012)

    Article  Google Scholar 

  161. M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan Navel Orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol. 52, 70 (2013)

    Article  ADS  Google Scholar 

  162. Y. H. Lee, K. S. Ham, S. H. Han, J. H. Yoo, and S. H. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)

    Article  ADS  Google Scholar 

  163. M. M. Tan, S. Cui, J. H. Yoo, S. H. Han, K. S. Ham, S. H. Nam, and Y. H. Lee, Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts, Appl. Spectrosc. 66(3), 262 (2012)

    Article  ADS  Google Scholar 

  164. Z. S. Lie, M. Pardede, M. O. Tjia, K. H. Kurniawan, and K. Kagawa, Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars, J. Appl. Phys. 118(8), 083304 (2015)

    Article  ADS  Google Scholar 

  165. S. Eto, T. Matsuo, T. Matsumura, T. Fujii, and M. Y. Tanaka, Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laserinduced breakdown spectroscopy, Spectrochim. Acta B 101, 245 (2014)

    Article  ADS  Google Scholar 

  166. L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Z. Dong, Rapid analysis on the heavy metal content of spent zinc–manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol. 44(8), 2469 (2012)

    Article  ADS  Google Scholar 

  167. T. Nishi, T. Sakka, H. Oguchi, K. Fukami, and Y. H. Ogata, In situ electrode surface analysis by laserinduced breakdown spectroscopy, J. Electrochem. Soc. 155(11), F237 (2008)

    Article  Google Scholar 

  168. W. Tawfik, W. A. Farooq, and Z. A. Alahmed, Damage profile of HDPE polymer using laser-induced plasma, J. Opt. Soc. Korea 18(1), 50 (2014)

    Article  Google Scholar 

  169. Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys. 7(6), 701 (2012)

    Article  Google Scholar 

  170. S. Tachibana, K. Kanai, S. Yoshida, K. Suzuki, and T. Sato, Combined effect of spatial and temporal variations of equivalence ratio on combustion instability in a low-swirl combustor, Proc. Combust. Inst. 35(3), 3299 (2015)

    Article  Google Scholar 

  171. L. Zimmer and S. Tachibana, Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment, Proc. Combust. Inst. 31(1), 737 (2007)

    Article  Google Scholar 

  172. Y. Y. Zhang, G. Xiong, S. Q. Li, Z. Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame 160(3), 725 (2013)

    Article  Google Scholar 

  173. H. Nozari, F. Rezaei, and S. H. Tavassoli, Analysis of organic vapors with laser induced breakdown spectroscopy, Phys. Plasmas 22(9), 093302 (2015)

    Article  ADS  Google Scholar 

  174. X. Wan and P. Wang, Remote quantitative analysis of minerals based on multispectral line-calibrated laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(10), 1132 (2014)

    Article  ADS  Google Scholar 

  175. Q. D. Zeng, L. B. Guo, X. Y. Li, C. He, M. Shen, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron, J. Anal. At. Spectrom. 30(2), 403 (2015)

    Article  Google Scholar 

  176. L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B 112, 40 (2015)

    Article  Google Scholar 

  177. M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, and H. Tarui, Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy, Appl. Opt. 42(30), 6159 (2003)

    Article  ADS  Google Scholar 

  178. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy, Spectrochim. Acta B 57(4), 701 (2002)

    Article  ADS  Google Scholar 

  179. W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)

    Article  ADS  Google Scholar 

  180. L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)

    Article  ADS  Google Scholar 

  181. L. Zhang, W. G. Ma, L. Dong, X. J. Yan, Z. Y. Hu, Z. X. Li, Y. Z. Zhang, L. Wang, W. B. Yin, and S. T. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)

    Article  ADS  Google Scholar 

  182. M. Saeki, A. Iwanade, C. Ito, I. Wakaida, B. Thornton, T. Sakka, and H. Ohba, Development of a fibercoupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core, J. Nucl. Sci. Technol. 51(7–8), 930 (2014)

    Article  Google Scholar 

  183. C. Ito, H. Naito, A. Nishimura, H. Ohba, I. Wakaida, A. Sugiyama, and K. Chatani, Development of radiationresistant optical fiber for application to observation and laser spectroscopy under high radiation dose, J. Nucl. Sci. Technol. 51(7–8), 944 (2014)

    Article  Google Scholar 

  184. Y. D. Gong, D. W. Choi, B. Y. Han, J. H. Yoo, S. H. Han, and Y. H. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453(1–3), 8 (2014)

    Article  ADS  Google Scholar 

  185. B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)

    Article  ADS  Google Scholar 

  186. Y. Lu, Y. D. Li, Y. Li, Y. F. Wang, S. Wang, Z. M. Bao, and R. Zheng, Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy, Spectrochim. Acta B 110, 63 (2015)

    Article  ADS  Google Scholar 

  187. F. Matroodi and S. H. Tavassoli, Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup, Appl. Phys. B 117(4), 1081 (2014)

    Article  ADS  Google Scholar 

  188. Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)

    Article  ADS  Google Scholar 

  189. Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(S6), A1011 (2012)

    Article  ADS  Google Scholar 

  190. B. Ashrafkhani, M. Bahreini, and S. H. Tavassoli, Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system, Opt. Spectrosc. 118(5), 841 (2015)

    Article  ADS  Google Scholar 

  191. Y. Ding, D. Tian, C. S. Li, Y. X. Duan, and G. Yang, Design and development of a miniature digital delay generator for laser-induced breakdown spectroscopy, Instrum. Sci. Technol. 43(1), 115 (2015)

    Article  Google Scholar 

  192. S. Wang, M. J. Xu, Q. Y. Lin, G. M. Guo, Z. Zhang, D. Tian, and Y. X. Duan, A multifunctional sampling chamber for laser-induced breakdown spectroscopy for on-site elemental analysis, Instrum. Sci. Technol. 43 (4), 485 (2015)

    Article  Google Scholar 

  193. Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J. 97(2), 109 (2011)

    Article  Google Scholar 

  194. N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc. 47(7), 882 (1993)

    Article  ADS  Google Scholar 

  195. W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc. 51(1), 87 (1997)

    Article  ADS  Google Scholar 

  196. K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc. 56(6), 682 (2002)

    Article  ADS  Google Scholar 

  197. C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties, Appl. Spectrosc. 51(7), 976 (1997)

    Article  ADS  Google Scholar 

  198. N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow, Anal. Chem. 66(7), 929 (1994)

    Article  Google Scholar 

  199. C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: A feasibility demonstration, Anal. Chem. 72(1), 247 (2000)

    Article  MathSciNet  Google Scholar 

  200. Y. S. Liu, Z. C. Hu, S. Gao, D. Günther, J. Xu, C. G. Gao, and H. H. Chen, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chem. Geol. 57(1–2), 34 (2008)

    Article  Google Scholar 

  201. X. P. Xia, M. Sun, G. C. Zhao, and Y. Luo, LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance, Precambrian Res. 144(3–4), 199 (2006)

    Article  Google Scholar 

  202. X. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, Laser ablation molecular isotopic spectrometry: Parameter influence on boron isotope measurements, Spectrochim. Acta B 66(8), 604 (2011)

    Article  ADS  Google Scholar 

  203. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, Laser ablation molecular isotopic spectrometry, Spectrochim. Acta B 66(2), 99 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Deguchi  (出口祥啓).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZZ., Deguchi, Y., Zhang, ZZ. et al. Laser-induced breakdown spectroscopy in Asia. Front. Phys. 11, 114213 (2016). https://doi.org/10.1007/s11467-016-0607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0607-0

Keywords

Navigation