Skip to main content
Log in

Protopanaxadiol improves lupus nephritis by regulating the PTX3/MAPK/ERK1/2 pathway

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Lupus nephritis (LN) is a kidney disease that occurs after systemic lupus erythematosus (SLE) affects the kidneys. Pentraxin 3 (PTX3) is highly expressed in the serum of patients with LN. Renal PTX3 deposition is directly related to clinical symptoms such as proteinuria and inflammation. The excessive proliferation of mesangial cells (MCs) is one of the representative pathological changes in the progression of LN, which is closely related to its pathogenesis. Protopanaxadiol (PPD) is the main component of ginsenoside metabolism and has not been reported in LN. The aim of this study was to investigate the relationship between PTX3 and mesangial cell proliferation and to evaluate the potential role and mechanism of PPD in improving LN. PTX3 is highly expressed in the kidneys of LN patients and LN mice and is positively correlated with renal pathological indicators, including proteinuria and PCNA. The excessive expression of PTX3 facilitated the proliferation of MCs, facilitated the activation of the MAPK/ERK1/2 signaling pathway, and increased the expression of HIF-1α. Further studies showed that PPD can effectively inhibit the abnormal proliferation of MCs with high expression of PTX3 and significantly improve LN symptoms such as proteinuria in MRL/lpr mice. The mechanism may be related to the inhibition of the PTX3/MAPK/ERK1/2 pathway. In this study, both in vitro, in vivo, and clinical sample results show that PTX3 is involved in the regulation of MCs proliferation and the early occurrence of LN. Natural active compound PPD can improve LN by regulating the PTX3/MAPK/ERK1/2 pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C (2020) Lupus nephritis. Nat Rev Dis Primers 6:7. https://doi.org/10.1038/s41572-019-0141-9

    Article  PubMed  Google Scholar 

  2. Kostopoulou M, Pitsigavdaki S, Bertsias G (2022) Lupus nephritis: improving treatment options. Drugs 82:735–748. https://doi.org/10.1007/s40265-022-01715-1

    Article  CAS  PubMed  Google Scholar 

  3. Gasparotto M, Gatto M, Binda V, Doria A, Moroni G (2020) Lupus nephritis: clinical presentations and outcomes in the 21st century. Rheumatology (Oxford) 59:v39–v51. https://doi.org/10.1093/rheumatology/keaa381

    Article  CAS  PubMed  Google Scholar 

  4. Stanley S, Vanarsa K, Soliman S, Habazi D, Pedroza C, Gidley G, Zhang T, Mohan S, Der E, Suryawanshi H, Tuschl T, Buyon J, Putterman C, Mok CC, Petri M, Saxena R, Mohan C (2020) Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat Commun 11:2197. https://doi.org/10.1038/s41467-020-15986-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maroz N, Segal MS (2013) Lupus nephritis and end-stage kidney disease. Am J Med Sci 346:319–323. https://doi.org/10.1097/MAJ.0b013e31827f4ee3

    Article  PubMed  Google Scholar 

  6. Liu JX, Feng XJ, Tian Y, Wang KX, Gao F, Yang L, Li HB, Tian YX, Yang R, Zhao L, Miao XY, Huang J, Liu QJ, Zhang W, Li YZ, Wang CL, Duan HJ, Liu SX (2019) Knockdown of TRIM27 expression suppresses the dysfunction of mesangial cells in lupus nephritis by FoxO1 pathway. J Cell Physiol 234:11555–11566. https://doi.org/10.1002/jcp.27810

    Article  CAS  PubMed  Google Scholar 

  7. Chang A, Clark MR, Ko K (2021) Cellular aspects of the pathogenesis of lupus nephritis. Curr Opin Rheumatol 33:197–204. https://doi.org/10.1097/BOR.0000000000000777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowling TK (2022) Mesangial cells in lupus nephritis. Curr Rheumatol Rep 23:83. https://doi.org/10.1007/s11926-021-01048-0

    Article  CAS  PubMed  Google Scholar 

  9. Schlondorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187. https://doi.org/10.1681/ASN.2008050549

    Article  CAS  PubMed  Google Scholar 

  10. Speeckaert MM, Speeckaert R, Carrero JJ, Vanholder R, Delanghe JR (2013) Biology of human pentraxin 3 (PTX3) in acute and chronic kidney disease. J Clin Immunol 33:881–890. https://doi.org/10.1007/s10875-013-9879-0

    Article  CAS  PubMed  Google Scholar 

  11. Weitoft T, Larsson A, Saxne T, Manivel VA, Lysholm J, Knight A, Ronnelid J (2017) Pentraxin 3 in serum and synovial fluid of patients with rheumatoid arthritis with and without autoantibodies. Scand J Rheumatol 46:346–352. https://doi.org/10.1080/03009742.2016.1244288

    Article  CAS  PubMed  Google Scholar 

  12. Wang BD, Luo YK, Zhou XS, Li RS (2018) Trifluoperazine induces apoptosis through the upregulation of Bax/Bcl-2 and downregulated phosphorylation of AKT in mesangial cells and improves renal function in lupus nephritis mice. Int J Mol Med 41:3278–3286. https://doi.org/10.3892/ijmm.2018.3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR (2017) Cellular and molecular mechanisms of autoimmunity and lupus nephritis. Int Rev Cell Mol Biol 332:43–154. https://doi.org/10.1016/bs.ircmb.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Assandri R, Monari M, Colombo A, Dossi A, Montanelli A (2015) Pentraxin 3 plasma levels and disease activity in systemic lupus erythematosus. Autoimmune Dis 2015:354014. https://doi.org/10.1155/2015/354014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Yu C, Ji K, Wang XK, Li X, Xie H, Wang YQ, Huang YT, Qi D, Fan HY (2019) Quercetin reduces TNF-alpha-induced mesangial cell proliferation and inhibits PTX3 production: involvement of NF-kappaB signaling pathway. Phytother Res 33:2401–2408. https://doi.org/10.1002/ptr.6430

    Article  CAS  PubMed  Google Scholar 

  16. Marschner JA, Mulay SR, Steiger S, Anguiano L, Zhao Z, Boor P, Rahimi K, Inforzato A, Garlanda C, Mantovani A, Anders HJ (2018) The long pentraxin PTX3 is an endogenous inhibitor of hyperoxaluria-related nephrocalcinosis and chronic kidney disease. Front Immunol 9:2173. https://doi.org/10.3389/fimmu.2018.02173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mancuso C, Santangelo R (2017) Panax ginseng and Panax quinquefolius: from pharmacology to toxicology. Food Chem Toxicol 107:362–372. https://doi.org/10.1016/j.fct.2017.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi LW, Wang CZ, Yuan CS (2010) American ginseng: potential structure–function relationship in cancer chemoprevention. Biochem Pharmacol 80:947–954. https://doi.org/10.1016/j.bcp.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  19. Xie XS, Liu HC, Fan JM, Li HJ (2009) Effects of ginsenoside Rb1 on TGF-beta1 induced p47phox expression and extracellular matrix accumulation in rat renal tubular epethelial cells. Sichuan da xue xue bao Yi xue ban J Sichuan Univ Med Sci Ed 40:106–110

    CAS  Google Scholar 

  20. Li Y, Hou JG, Liu Z, Gong XJ, Hu JN, Wang YP, Liu WC, Lin XH, Wang Z, Li W (2021) Alleviative effects of 20 (R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-κB signaling pathways in C57BL/6 mice. J Ethnopharmacol 267:113500. https://doi.org/10.1016/j.jep.2020.113500

    Article  CAS  PubMed  Google Scholar 

  21. Zhu YY, Zhu CH, Yang HX, Deng JJ, Fan DD (2020) Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 155:104746. https://doi.org/10.1016/j.phrs.2020.104746

    Article  CAS  PubMed  Google Scholar 

  22. You YL, Ling C, Feng YL (2009) Efficacy of combined therapy with ginsenosides and prednisone in treating systemic lupus erythematosus—a randomized, controlled and double-blinded trial. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi Jiehe Zazhi Chin J Integr Tradit West Med 29:776–779

    CAS  Google Scholar 

  23. You YL, Feng YL, Cai Q, Guan JL, Zhang LL, Xu MJ, Xu X, Ling CQ (2010) Efficacy of ginsenosides combined with prednisone in patients with systemic lupus erythematosus: a prospective, randomized, double-blind, placebo-controlled trial. Zhong xi yi jie he xue bao J Chin Integr Med 8:762–766. https://doi.org/10.3736/jcim20100806

    Article  Google Scholar 

  24. Choi MK, Jin S, Jeon JH, Kang WY, Seong SJ, Yoon YR, Han YH, Song IS (2020) Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J Ginseng Res 44:229–237. https://doi.org/10.1016/j.jgr.2018.10.006

    Article  PubMed  Google Scholar 

  25. Won HJ, Kim HI, Park T, Kim H, Jo K, Jeon H, Ha SJ, Hyun JM, Jeong A, Kim JS (2019) Non-clinical pharmacokinetic behavior of ginsenosides. J Ginseng Res 43:354–360. https://doi.org/10.1016/j.jgr.2018.06.001

    Article  PubMed  Google Scholar 

  26. Cf C, Wf C, Jt Z (2008) Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin 29:1103–1108. https://doi.org/10.1111/j.1745-7254.2008.00868.x

    Article  CAS  Google Scholar 

  27. Han MH, Chen J, Chen SL, Wang XT (2010) Development of a UPLC-ESI-MS/MS assay for 20 (S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats. Anal Sci 26:749–753. https://doi.org/10.2116/analsci.26.749

    Article  CAS  PubMed  Google Scholar 

  28. Ren HC, Sun JG, Wang GJ, A JY, Xie HT, Zha WB, Yan B, Sun FZ, Hao HP, Gu SH (2008) Sensitive determination of 20 (S)-protopanaxadiol in rat plasma using HPLC–APCI-MS: application of pharmacokinetic study in rats. J Pharm Biomed Anal 48:1476–1480. https://doi.org/10.1016/j.jpba.2008.09.045

    Article  CAS  PubMed  Google Scholar 

  29. Loeffler I, Hopfer U, Koczan D, Wolf G (2011) Type VIII collagen modulates TGF-beta1-induced proliferation of mesangial cells. J Am Soc Nephrol 22:649–663. https://doi.org/10.1681/ASN.2010010098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu C, Li P, Dang X, Zhang X, Mao YH, Chen XM (2022) Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 132:102871. https://doi.org/10.1016/j.jaut.2022.102871

    Article  PubMed  Google Scholar 

  31. Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28:157–183. https://doi.org/10.1146/annurev-immunol-030409-101305

    Article  CAS  PubMed  Google Scholar 

  32. Jaillon S, Bonavita E, Gentile S, Rubino M, Laface I, Garlanda C, Mantovani A (2014) The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol 165:165–178. https://doi.org/10.1159/000368778

    Article  CAS  PubMed  Google Scholar 

  33. Chorny A, Casas-Recasens S, Sintes J, Shan M, Polentarutti N, Garcia-Escudero R, Walland AC, Yeiser JR, Cassis L, Carrillo J, Puga I, Cunha C, Bastos H, Rodrigues F, Lacerda JF, Morais A, Dieguez-Gonzalez R, Heeger PS, Salvatori G, Carvalho A, Garcia-Sastre A, Blander JM, Mantovani A, Garlanda C, Cerutti A (2016) The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J Exp Med 213:2167–2185. https://doi.org/10.1084/jem.20150282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tung JN, Ko CP, Yang SF, Cheng CW, Chen PN, Chang CY, Lin CL, Yang TF, Hsieh YH, Chen KC (2016) Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol 129:201–209. https://doi.org/10.1007/s11060-016-2168-z

    Article  CAS  PubMed  Google Scholar 

  35. Bassi N, Del Prete D, Ghirardello A, Gatto M, Ceol M, Zen M, Bettio S, Mantovani A, Iaccarino L, Punzi L, Doria A (2015) PTX3, anti-PTX3, and anti-C1q autoantibodies in lupus glomerulonephritis. Clin Rev Allergy Immunol 49:217–226. https://doi.org/10.1007/s12016-015-8476-9

    Article  CAS  PubMed  Google Scholar 

  36. Lee HL, Kang KS (2017) Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells. J Ginseng Res 41:227–231. https://doi.org/10.1016/j.jgr.2017.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Im DS (2020) Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules 10(3):444. https://doi.org/10.3390/biom10030444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu CY, Hua KF, Hsu WH, Suzuki Y, Chu LJ, Lee YC, Takahata A, Lee SL, Wu CC, Nikolic-Paterson DJ, Ka SM, Chen A (2020) IgA nephropathy benefits from compound K treatment by inhibiting NF-kappaB/NLRP3 inflammasome and enhancing autophagy and SIRT1. J Immunol 205:202–212. https://doi.org/10.4049/jimmunol.1900284

    Article  CAS  PubMed  Google Scholar 

  39. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH (2002) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 25:743–747. https://doi.org/10.1248/bpb.25.743

    Article  CAS  PubMed  Google Scholar 

  40. Yang ZC, Liu Y (2016) Hypoxia-inducible factor-1alpha and autoimmune lupus, arthritis. Inflammation 39:1268–1273. https://doi.org/10.1007/s10753-016-0337-z

    Article  CAS  PubMed  Google Scholar 

  41. Darbuka E, Gurkaslar C, Yaman I (2021) Ochratoxin A induces ERK1/2 phosphorylation-dependent apoptosis through NF-kappaB/ERK axis in human proximal tubule HK-2 cell line. Toxicon 199:79–86. https://doi.org/10.1016/j.toxicon.2021.06.005

    Article  CAS  PubMed  Google Scholar 

  42. Olson N, Vliet AVD (2011) Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 25:125–137. https://doi.org/10.1016/j.niox.2010.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the support from Yantai University and Yu-Huang-Ding Hospital/Qingdao University.

Funding

No funding sources were received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HF, ZL, and DQ conceived and designed research; HG, KJ, MY, TP, XM, TL, ZW, BG, and KL performed experiments; ZL, HG, and KJ analyzed data; MY, TP, XM, TL, KL, and ZW interpreted results of experiments; ZL and HG drafted the manuscript; HF, ZL, and MY edited and revised the manuscript; HF and DQ approved the final version of the manuscript.

Corresponding authors

Correspondence to Dong Qi or Huaying Fan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 312 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Gan, H., Ji, K. et al. Protopanaxadiol improves lupus nephritis by regulating the PTX3/MAPK/ERK1/2 pathway. J Nat Med (2024). https://doi.org/10.1007/s11418-023-01777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-023-01777-9

Keywords

Navigation