Skip to main content
Log in

Intermittent hypoxia induces myofibroblast differentiation and extracellular matrix production of MRC5s via HIF-1α-TGF-β/Smad pathway

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether or not intermittent hypoxia (IH), the main characteristic of obstructive sleep apnea (OSA) may affect the myofibroblast differentiation and extracellular matrix (ECM) production of lung fibroblast through the HIF-1α-TGF-β/Smad pathway and assess the interventional role of a HIF-1α inhibitor, 2-methoxyestradiol (2-ME2).

Method

The human lung fibroblast MRC5 cells were exposed to normoxia or IH conditions, and the expression of myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and ECM protein collagen I were evaluated. To clarify the underlying mechanism, the expression level of HIF-1α, TGF-β, and p-Smads/Smads were measured and the effects of inhibiting HIF-1α with 2-ME2 on the α-SMA expression level and ECM production through the TGF-β/Smad pathway were assessed. Si HIF-1α was applied to genetically inhibit HIF-1α in MRC5 cells, and the related proteins were assessed.

Results

IH increased the protein and mRNA expression of Collagen I and α-SMA of MRC5 cells in a time-dependent manner. IH activated the protein and mRNA level of HIF-1α and TGF-β and increased the phosphorylation of Smad2/Smad3 of MRC5 cells in a time-dependent manner. 2-ME2 inhibited the activation of HIF-1α induced by IH and decreased overexpression of TGF-β, p-Smad2/Smad2, and p-Smad3/Smad3, which in turn partially reversed the upregulation of α-SMA and Collagen I induced by IH in MRC5 cells. When HIF-1α was successfully silenced by si-HIF-1α, upregulation of TGF-β induced by intermittent hypoxia was partially decreased.

Conclusions

This study showed that IH contributes to myofibroblast differentiation and excessive ECM production of MRC5 cells through activation of the HIF-1α-TGF-β/Smad pathway. 2-ME2 partially attenuated myofibroblast differentiation induced by IH by inhibiting the HIF-1α-TGF-β/Smad pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Zamarron C, García Paz V, Riveiro A (2008) Obstructive sleep apnea syndrome is a systemic disease. Current evidence. Eur J Intern Med 19:390–398

    Article  PubMed  Google Scholar 

  2. Köktürk O, Ciftçi B (2003) Overlap syndrome. Tuberkuloz ve Toraks 51:333–48

    PubMed  Google Scholar 

  3. Prasad B, Nyenhuis SM, Imayama I, Siddiqi A, Teodorescu M (2020) Asthma and obstructive sleep apnea overlap: what has the evidence taught us? Am J Respir Crit Care Med 201:1345–1357

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ioachimescu OC, Janocko NJ, Ciavatta MM, Howard M, Warnock MV (2020) Obstructive lung disease and obstructive sleep apnea (OLDOSA) cohort study: 10-year assessment. J Clin Sleep Med: JCSM: Off Publ Am Acad Sleep Med 16:267–277

    Google Scholar 

  5. Schiza SE, Bouloukaki I, Bolaki M, Antoniou KM (2020) Obstructive sleep apnea in pulmonary fibrosis. Curr Opin Pulm Med 26:443–448

    Article  PubMed  Google Scholar 

  6. Hirota N, Martin JG (2013) Mechanisms of airway remodeling. Chest 144:1026–1032

    Article  PubMed  Google Scholar 

  7. Xu XM, Yao D, Cai XD, Ding C, Lin QD, Wang LX et al (2015) Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats. Sleep Breathing = Schlaf Atmung 19:677–84

    Article  PubMed  Google Scholar 

  8. Song S, Tan J, Miao Y, Zhang Q (2017) Effect of different levels of intermittent hypoxia on autophagy of hippocampal neurons. Sleep Breathing = Schlaf Atmung 21:791–8

    Article  PubMed  Google Scholar 

  9. Huang H, Jiang X, Dong Y, Zhang X, Ding N, Liu J et al (2014) Adiponectin alleviates genioglossal mitochondrial dysfunction in rats exposed to intermittent hypoxia. PLoS One 9:e109284

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu J, Li P, Wu X, Chen W (2015) Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1alpha and opioid receptors in experimental rats. Sleep Breathing = Schlaf Atmung 19:561–8

    Article  PubMed  Google Scholar 

  11. Hu B, Phan SH (2013) Myofibroblasts. Curr Opin Rheumatol 25:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12

    Article  PubMed  Google Scholar 

  13. Prabhakar NR, Peng YJ, Nanduri J (2020) Hypoxia-inducible factors and obstructive sleep apnea. J Clin Investig 130:5042–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aquino-Gálvez A, González-Ávila G, Jiménez-Sánchez LL, Maldonado-Martínez HA, Cisneros J, Toscano-Marquez F et al (2019) Dysregulated expression of hypoxia-inducible factors augments myofibroblasts differentiation in idiopathic pulmonary fibrosis. Respir Res 20:130

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lei R, Li J, Liu F, Li W, Zhang S, Wang Y et al (2019) HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle (Georgetown, Tex) 18:3239–3250

    Article  CAS  PubMed  Google Scholar 

  16. Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harbor Perspect Biol 8:a021873

    Article  Google Scholar 

  18. Carreras A, Kayali F, Zhang J, Hirotsu C, Wang Y, Gozal D (2012) Metabolic effects of intermittent hypoxia in mice: steady versus high-frequency applied hypoxia daily during the rest period. Am J Physiol Regul Integr Comp Physiol 303:R700–R709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. ten Brinke A, Sterk PJ, Masclee AA, Spinhoven P, Schmidt JT, Zwinderman AH et al (2005) Risk factors of frequent exacerbations in difficult-to-treat asthma. Eur Respir J 26:812–818

    Article  PubMed  Google Scholar 

  20. McNicholas WT (2017) COPD-OSA overlap syndrome: evolving evidence regarding epidemiology, clinical consequences, and management. Chest 152:1318–1326

    Article  PubMed  Google Scholar 

  21. Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS et al (2020) Airway remodeling in asthma. Front Med 7:191

    Article  Google Scholar 

  22. Plante S, Semlali A, Joubert P, Bissonnette E, Laviolette M, Hamid Q et al (2006) Mast cells regulate procollagen I (alpha 1) production by bronchial fibroblasts derived from subjects with asthma through IL-4/IL-4 delta 2 ratio. J Allergy Clin Immunol 117:1321–1327

    Article  CAS  PubMed  Google Scholar 

  23. Dewan NA, Nieto FJ, Somers VK (2015) Intermittent hypoxemia and OSA: implications for comorbidities. Chest 147:266–274

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C et al (2016) Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol 7:532

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM et al (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 192:1462–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodwin J, Choi H, Hsieh MH, Neugent ML, Ahn JM, Hayenga HN et al (2018) Targeting hypoxia-inducible factor-1α/pyruvate dehydrogenase kinase 1 axis by dichloroacetate suppresses bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 58:216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar BS, Raghuvanshi DS, Hasanain M, Alam S, Sarkar J, Mitra K et al (2016) Recent advances in chemistry and pharmacology of 2-methoxyestradiol: an anticancer investigational drug. Steroids 110:9–34

    Article  CAS  PubMed  Google Scholar 

  28. Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP et al (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368:237–239

    Article  CAS  PubMed  Google Scholar 

  29. Zhou X, Liu C, Lu J, Zhu L, Li M (2018) 2-Methoxyestradiol inhibits hypoxia-induced scleroderma fibroblast collagen synthesis by phosphatidylinositol 3-kinase/Akt/mTOR signalling. Rheumatology (Oxford) 57:1675–1684

    Article  CAS  PubMed  Google Scholar 

  30. Huerta-Yepez S, Baay-Guzman GJ, Garcia-Zepeda R, Hernandez-Pando R, Vega MI, Gonzalez-Bonilla C et al (2008) 2-Methoxyestradiol (2-ME) reduces the airway inflammation and remodeling in an experimental mouse model. Clin Immunol (Orlando, Fla) 129:313–324

    Article  CAS  Google Scholar 

Download references

Funding

Funding for this study included grants from the Chinese National Natural Science Foundation (Nos. 81970084 and 81670084), Chinese National Key Research and Development Program (No. 2016YFC1304502), and the Tianjin Key Research and Development Program (No. 20YFZCSY00390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Jie Cao.

Ethics declarations

Ethical approval

No experiments with participants or animals were performed in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Si, L., Yu, Z. et al. Intermittent hypoxia induces myofibroblast differentiation and extracellular matrix production of MRC5s via HIF-1α-TGF-β/Smad pathway. Sleep Breath 28, 291–300 (2024). https://doi.org/10.1007/s11325-023-02889-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-023-02889-y

Keywords

Navigation