Skip to main content

Advertisement

Log in

NETosis and kidney disease: what do we know?

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Neutrophils are the most abundant leukocytes in the blood. They are rapidly mobilized from the circulation to sites of inflammation and/or infection. In affected tissues, neutrophils exhibit some dramatic antimicrobial functions, including degranulation, reactive oxygen species (ROS) production, phagocytosis, and formation of neutrophil extracellular traps (NETs). Like other cells of the immune system, after fulfilling their biological duties, they enter the path of death. Depending on the conditions, they may undergo different types of cell death (apoptosis, necrosis, necroptosis, autophagy, NETosis, and pyroptosis) that require the participation of multiple signaling pathways. NETosis is a unique neutrophil cell death mechanism that gives rise to different inflammatory and autoimmune pathological conditions. Recent studies have shown that NETosis also plays a role in the formation and/or progression of kidney diseases. This review discusses the underlying mechanism of NETosis and its relationship with some major kidney diseases in light of the current knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C (2021) Neutrophils: many ways to die. Front Immunol 12:631821. https://doi.org/10.3389/fimmu.2021.631821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, Saavedra-Mayorga DE, Echavarria R (2019) Neutrophil extracellular traps in the establishment and progression of renal diseases. Medicina (Kaunas) 55(8):431. https://doi.org/10.3390/medicina55080431

    Article  PubMed  Google Scholar 

  3. Yvan-Charvet L, Ng LG (2019) Granulopoiesis and neutrophil homeostasis: ametabolic, daily balancing act. Trends Immunol 40:598–612. https://doi.org/10.1016/j.it.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  4. Nakazawa D, Marschner JA, Platen L, Anders H-J (2018) Extracellular traps in kidney disease. Kidney Int 94:1087–1098. https://doi.org/10.1016/j.kint.2018.08.035

    Article  CAS  PubMed  Google Scholar 

  5. Silvestre-Roig C, Hidalgo A, Soehnlein O (2016) Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127:2173–2181. https://doi.org/10.1182/blood-2016-01-688887

    Article  CAS  PubMed  Google Scholar 

  6. Petri B, Sanz MJ (2018) Neutrophil chemotaxis. Cell Tissue Res 371:425–436. https://doi.org/10.1007/s00441-017-2776-8

    Article  CAS  PubMed  Google Scholar 

  7. Rosales C (2020) Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 108:377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  9. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122:2784–2794. https://doi.org/10.1182/blood-2013-04-457671

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Xie G, Liang L, Liu H, Pan J, Cheng H, Wang H, Qu A, Wang Y (2018) RIPK3-mediated necroptosis and neutrophil infiltration are associated with poor prognosis in patients with alcoholic cirrhosis. J Immunol Res 2018:1509851. https://doi.org/10.1155/2018/1509851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makuloluwa KK, Midgley A, Beresford M (2014) Neutrophil extracellular trapmediated activation of endosomal toll-like receptors induce immune activation in juvenile-onset systemic lupus erythematosus. Pediatr Rheumatol 12:110. https://doi.org/10.1186/1546-0096-12-S1-P110

    Article  Google Scholar 

  12. Gupta S, Kaplan MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12:402–413. https://doi.org/10.1038/nrneph.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singhal A, Kumar S (2022) Neutrophil and remnant clearance in immunity and inflammation. Immunology 165:22–43. https://doi.org/10.1111/imm.13423

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence SM, Corriden R, Nizet V (2020) How neutrophils meet their end. Trends Immunol 41:531–544. https://doi.org/10.1016/j.it.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  15. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–294. https://doi.org/10.1016/j.immuni.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  16. Greenlee-Wacker MC (2016) Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev 273:357–370. https://doi.org/10.1111/imr.12453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dąbrowska D, Jabłońska E, Iwaniuk A, Garley M (2019) Many ways-one destination: different types of neutrophils death. Int Rev Immunol 38:18–32. https://doi.org/10.1080/08830185.2018.1540616

    Article  CAS  PubMed  Google Scholar 

  18. Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59:229–240. https://doi.org/10.1002/jlb.59.2.229

    Article  CAS  PubMed  Google Scholar 

  19. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16:1438–1444. https://doi.org/10.1038/cdd.2009.96

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Dong Z (2018) Neutrophil extracellular traps in ischemic AKI: new way to kill. Kidney Int 93(2):303–305. https://doi.org/10.1016/j.kint.2017.09.031

    Article  PubMed  Google Scholar 

  21. Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB (2018) Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion induced acute kidney injury. Kidney Int 93:365–374. https://doi.org/10.1016/j.kint.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  22. Nakazawa D, Kumar SV, Marschner J, Desai J, Holderied A, Rath L, Kraft F, Lei Y, Fukasawa Y, Moeckel GW, Angelotti ML, Liapis H, Anders H-J (2017) Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J Am Soc Nephrol 28:1753–1768. https://doi.org/10.1681/ASN.2016080925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shrestha B, Ito T, Kakuuchi M, Totoki T, Nagasato T, Yamamoto M, Maruyama I (2019) Recombinant thrombomodulin suppresses histone-induced neutrophil extracellular trap formation. Front Immunol 10:2535. https://doi.org/10.3389/fimmu.2019.02535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hashemi P, Nouri-Vaskeh M, Alizadeh L, Baghbanzadeh A, Badalzadeh R, Askari E, Baradaran B (2022) NETosis in ischemic/reperfusion injuries: an organ-based review. Life Sci 290:120158. https://doi.org/10.1016/j.lfs.2021.120158

    Article  CAS  PubMed  Google Scholar 

  25. Melo Z, Gutierrez-Mercado YK, Garcia-Martínez D, Portilla-de-Buen E, Canales-Aguirre AA, Gonzalez-Gonzalez R, Franco-Acevedo A, Palomino J, Echavarria R (2020) Sex-dependent mechanisms involved in renal tolerance to ischemia-reperfusion: role of inflammation and histone H3 citrullination. Transpl Immunol 63:101331. https://doi.org/10.1016/j.trim.2020.101331

    Article  CAS  PubMed  Google Scholar 

  26. Hussien YA, Abdalkadim H, Mahbuba W, Hadi N, Jamil D, Al-Aubaidy HA (2020) The nephroprotective effect of lycopene on renal ischemic reperfusion injury: a mouse model. Indian J Clin Biochem 35:474–481. https://doi.org/10.1007/s12291-019-00848-7

    Article  CAS  PubMed  Google Scholar 

  27. Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2 Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 298:662–671. https://doi.org/10.1152/ajprenal.00421.2009

    Article  CAS  Google Scholar 

  28. Meng XM, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10:493–503. https://doi.org/10.1038/nrneph.2014.114

    Article  CAS  PubMed  Google Scholar 

  29. McGuire AL, Urosevic N, Chan DT, Dogra G, Inglis TJ, Chakera A (2014) The impact of chronic kidney disease and short-term treatment with rosiglitazone on plasma cell-free DNA levels. PPAR Res 2014:643189. https://doi.org/10.1155/2014/643189

    Article  PubMed  PubMed Central  Google Scholar 

  30. da Jeong W, Moon JY, Choi YW, Moon H, Kim K, Lee Y-H, Kim S-Y, Kim Y-G, Jeong K-H, Lee S-H (2015) Effect of blood pressure and glycemic control on the plasma cell-free DNA in hemodialysis patients. Kidney Res Clin Pract 34:201–206. https://doi.org/10.1016/j.krcp.2015.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, Gröne H-J, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625. https://doi.org/10.1038/nm.1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kallenberg CGM, Stegeman CA, Abdulahad WH, Heeringa P (2013) Pathogenesis of ANCA-associated vasculitis: new possibilities for intervention. Am J Kidney Dis 62(6):1176–1187. https://doi.org/10.1053/j.ajkd.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  33. Huang YM, Wang H, Wang C, Chen M, Zhao MH (2015) Promotion of hypercoagulability an antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol 67(10):2780–2790. https://doi.org/10.1002/art.39239

    Article  PubMed  Google Scholar 

  34. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 87(11):4115–4119. https://doi.org/10.1073/pnas.87.11.4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang S, Zhang Y, Yin S-W, Gao X-J, Shi W-W, Wang Y, Huang X, Wang L, Zou L-Y, Zhao J-H, Huang Y-J, Shan L-Y, Gounni AS, Wu Y-Z, Zhang J-B (2015) Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin Exp Immunol 180(3):408–418. https://doi.org/10.1111/cei.12589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma YH, Ma TT, Wang C, Wang H, Chang D-Y, Chen M, Zhao M-H (2016) High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther 18:2. https://doi.org/10.1186/s13075-015-0903-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Sullivan KM, Holdsworth SR (2021) Neutrophil extracellular traps: a potential therapeutic target in MPO-ANCA associated vasculitis? Front Immunol 12:635188. https://doi.org/10.3389/fimmu.2021.635188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Sullivan KM, Lo CY, Summers SA, Elgass KD, McMillan PJ, Longano A, Ford SL, Gan P-Y, Kerr PG, Kitching AR, Holdsworth SR (2015) Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int 88(5):1030–1046. https://doi.org/10.1038/ki.2015.202

    Article  CAS  PubMed  Google Scholar 

  39. Söderberg D, Kurz T, Motamedi A, Hellmark T, Eriksson P, Segelmark M (2015) Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford) 54(11):2085–2094. https://doi.org/10.1093/rheumatology/kev217

    Article  PubMed  Google Scholar 

  40. Wang H, Sha LL, Ma TT, Zhang LX, Chen M, Zhao MH (2016) Circulating level of neutrophil extracellular traps is not a useful biomarker for assessing disease activity in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS ONE 11(2):e0148197. https://doi.org/10.1371/journal.pone.0148197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kraaij T, Kamerling SWA, van Dam LS, Bakker JA, Bajema IM, Page T, Brunini F, Pusey CD, Toes REM, Scherer HU, Rabelink TJ, van Kooten C, Teng YKO (2018) Excessive neutrophil extracellular trap formation in ANCA-associated vasculitis is independent of ANCA. Kidney Int 94(1):139–149. https://doi.org/10.1016/j.kint.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  42. Hacbarth E, Kajdacsy-Balla A (1986) Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum 29:1334–1342. https://doi.org/10.1002/art.1780291105

    Article  CAS  PubMed  Google Scholar 

  43. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818. https://doi.org/10.1073/pnas.0909927107

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rother N, Pieterse E, Lubbers J, Hilbrands L, van der Vlag J (2017) Acetylated histones in apoptotic microparticles drive the formation of neutrophil extracellular traps in active lupus nephritis. Front Immunol 8:1136. https://doi.org/10.3389/fimmu.2017.01136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Dam LS, Kraaij T, Kamerling SWA, Bakker JA, Scherer UH, Rabelink TJ, van Kooten C, Teng YKO (2019) Intrinsically distinct role of neutrophil extracellular trap formation in antineutrophil cytoplasmic antibody-associated vasculitis compared to systemic lupus erythematosus. Arthritis Rheumatol 71(12):2047–2058. https://doi.org/10.1002/art.41047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torres-Ruiz J, Villca-Gonzales R, Gómez-Martín D, Zentella-Dehesa A, Tapia-Rodriguez M, Uribe-Uribe NO, Morales-Buenrostro LE, Alberu J (2020) A potential role of neutrophil extracellular traps (NETs) in kidney acute antibody mediated rejection. Transpl Immunol 60:101286. https://doi.org/10.1016/j.trim.2020.101286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Ozturk.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaygut, D., Ozturk, I., Ulu, S. et al. NETosis and kidney disease: what do we know?. Int Urol Nephrol 55, 1985–1994 (2023). https://doi.org/10.1007/s11255-023-03527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03527-y

Keywords

Navigation