Skip to main content

Advertisement

Log in

Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A Rockwell C 120° diamond indenter with a spherical tip radius of 100 µm was used to measure the coefficient of friction by microscratch test under different normal loads. The measured friction coefficient was found to increase with normal load, which was rationalised by a geometrical intersection model. Although plastic deformation increases with normal load, its contribution into the total deformation becomes smaller with the increase in normal load. Elastic deformation predominates in the total deformation under large normal loads. It is the adhesion shear stress over the contact area that causes plastic deformation. Lateral force was found to be proportional to penetration depth, especially under large normal loads when elastic deformation predominated the deformation, with the proportionality representing deformation or shearing resistant toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Venkataraman, S., Kohlstedt, D.L., Gerberich, W.W.: Microscratch Analysis of the Work of Adhesion for Pt Thin-Films on NiO. J. Mater. Res. 7(5), 1126–1132 (1992). https://doi.org/10.1557/Jmr.1992.1126

    Article  CAS  Google Scholar 

  2. Beegan, D., Chowdhury, S., Laugier, M.T.: Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf. Coat. Technol. 201(12), 5804–5808 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.031

    Article  CAS  Google Scholar 

  3. Wredenberg, F., Larsson, P.L.: Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1–2), 76–83 (2009). https://doi.org/10.1016/j.wear.2008.05.014

    Article  CAS  Google Scholar 

  4. Akono, A.T., Randall, N.X., Ulm, F.J.: Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. J. Mater. Res. 27(2), 485–493 (2012). https://doi.org/10.1557/jmr.2011.402

    Article  CAS  Google Scholar 

  5. Bard, R., Ulm, F.J.: Scratch hardness—strength solutions for cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 36(3), 307–326 (2012)

    Article  Google Scholar 

  6. Miyake, S., Yamazaki, S.: Nanoscratch properties of extremely thin diamond-like carbon films. Wear. 305(1–2), 69–77 (2013). https://doi.org/10.1016/j.wear.2013.05.005

    Article  CAS  Google Scholar 

  7. Wang, Z., Zeng, Q., Zheng, J.: Adsorption and Lubricating Behavior of Salivary Pellicle on Dental Ceramic. Lubrication Engineering: (2017)

  8. Burnett, P.J., Rickerby, D.S.: The relationship between hardness and scratch adhession. Thin Solid Films 154(1–2), 403–416 (1987)

    Article  CAS  Google Scholar 

  9. Ollendorf, H., Schneider, D.: A comparative study of adhesion-test methods for hard coatings. Surf. Coat. Technol. 113(1–2), 86–102 (1999). https://doi.org/10.1016/S0257-8972(98)00827-5

    Article  CAS  Google Scholar 

  10. Matthews, A., Franklin, S., Holmberg, K.: Tribological coatings: contact mechanisms and selection. J. Phys. D 40(18), 5463–5475 (2007). https://doi.org/10.1088/0022-3727/40/18/S07

    Article  CAS  Google Scholar 

  11. Bhushan, B., Gupta, B.K., Azarian, M.H.: Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications. Wear 181(95), 743–758 (1995)

    Article  Google Scholar 

  12. Zhao, X.Z., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear. 223(1–2), 66–78 (1998). https://doi.org/10.1016/S0043-1648(98)00302-0

    Article  CAS  Google Scholar 

  13. Beake, B.D., Goodes, S.R., Shi, B.: Nanomechanical and nanotribological testing of ultra-thin carbon-based and MoST films for increased MEMS durability. J. Phys. D 42(6), 065301 (2009). https://doi.org/10.1088/0022-3727/42/6/065301

    Article  CAS  Google Scholar 

  14. Wu, T.W.: Microscratch and Load Relaxation Tests for Ultra-Thin Films. J. Mater. Res. 6(2), 407–426 (1991). https://doi.org/10.1557/Jmr.1991.0407

    Article  Google Scholar 

  15. Burnett, P.J., Rickerby, D.S.: The scratch adhesion test—an elastic–plastic indentation analysis. Thin Solid Films. 157(2), 233–254 (1988). https://doi.org/10.1016/0040-6090(88)90006-5

    Article  CAS  Google Scholar 

  16. Sekler, J., Steinmann, P.A., Hintermann, H.E.: The scratch test - different critical load determination techniques. Surf. Coat. Technol. 36(1–2), 519–529 (1988). https://doi.org/10.1016/0257-8972(88)90179-X

    Article  CAS  Google Scholar 

  17. Andriy, K., Yury, G., Vladislav, D., Ali, E.: Phase transformations in silicon under dry and lubricated sliding. Tribol. Trans. 45(3), 372–380 (2002)

    Article  Google Scholar 

  18. Charitidis, C., Logothetidis, S., Gioti, M.: A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 125(1–3), 201–206 (2000). https://doi.org/10.1016/S0257-8972(99)00546-0

    Article  CAS  Google Scholar 

  19. Huang, L.Y., Xu, K.W., Lu, J.: Evaluation of scratch resistance of diamond-like carbon films on Ti alloy substrate by nano-scratch technique. Diam. Relat. Mater. 11(8), 1505–1510 (2002). https://doi.org/10.1016/S0925-9635(02)00054-7

    Article  CAS  Google Scholar 

  20. Meng, B.B., Zhang, Y., Zhang, F.H.: Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter. Appl. Phys. A. 122(3), 247 (2016). https://doi.org/10.1007/s00339-016-9802-7

    Article  CAS  Google Scholar 

  21. AlMotasem, A.T., Bergstrom, J., Gaard, A., Krakhmalev, P., Holleboom, L.J.: Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics. Tribol. Lett. 65(3), 101 (2017). https://doi.org/10.1007/s11249-017-0876-y

    Article  CAS  Google Scholar 

  22. Diez-Ibarbia, A., Fernandez-Del-Rincon, A., Garcia, P., De-Juan, A., Iglesias, M., Viadero, F.: Assessment of load dependent friction coefficients and their influence on spur gears efficiency. Meccanica(3), 1–21 (2017)

  23. Zhang, H.D., Takeuchi, Y., Chong, W.W.F., Mitsuya, Y., Fukuzawa, K., Itoh, S.: Simultaneous in situ measurements of contact behavior and friction to understand the mechanism of lubrication with nanometer-thick liquid lubricant films. Tribol. Int. 127, 138–146 (2018). https://doi.org/10.1016/j.triboint.2018.05.043

    Article  CAS  Google Scholar 

  24. Wang, J., Ma, L., Li, W., Zhou, Z.R.: Influence of different lubricating fluids on friction trauma of small intestine during enteroscopy. Tribol. Int. 126, 29–38 (2018). https://doi.org/10.1016/j.triboint.2018.05.002

    Article  CAS  Google Scholar 

  25. Sterner, O., Aeschlimann, R., Zurcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: From coefficient of friction to sliding work. Tribol. Lett. 63(1), 9 (2016). https://doi.org/10.1007/s11249-016-0696-5

    Article  CAS  Google Scholar 

  26. Zhang, S., Zeng, X., Igartua, A., Rodriguez-Vidal, E., van der Heide, E.: Texture design for reducing tactile friction independent of sliding orientation on stainless steel sheet. Tribol. Lett. 65(3), 89 (2017). https://doi.org/10.1007/s11249-017-0869-x

    Article  CAS  Google Scholar 

  27. Lu, P., Wood, R.J.K., Gee, M.G., Wang, L., Pfleging, W.: A novel surface texture shape for directional friction control. Tribol. Lett. 66(1), 51 (2018). https://doi.org/10.1007/s11249-018-0995-0

    Article  Google Scholar 

  28. Szlufarska, I., Chandross, M., Carpick, R.W.: TOPICAL REVIEW: Recent advances in single-asperity nanotribology. J. Phys. D 41(12), 1854–1862 (2008)

    Article  Google Scholar 

  29. Udaykant Jadav, P., Amali, R., Adetoro, O.B.: Analytical friction model for sliding bodies with coupled longitudinal and transverse vibration. Tribol. Int. 126, 240–248 (2018). https://doi.org/10.1016/j.triboint.2018.04.018

    Article  Google Scholar 

  30. Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., Sun, J., Li, J.: The evolving quality of frictional contact with graphene. Nature. 539(7630), 541–545 (2016). https://doi.org/10.1038/nature20135

    Article  CAS  Google Scholar 

  31. Saravanan, P., Selyanchyn, R., Watanabe, M., Fujikawa, S., Tanaka, H., Lyth, S.M., Sugimura, J.: Ultra-low friction of polyethylenimine / molybdenum disulfide (PEI/MoS2)15 thin films in dry nitrogen atmosphere and the effect of heat treatment. Tribol. Int. 127, 255–263 (2018). https://doi.org/10.1016/j.triboint.2018.06.003

    Article  CAS  Google Scholar 

  32. Westlund, V., Heinrichs, J., Jacobson, S.: On the role of material transfer in friction between metals: initial phenomena and effects of roughness and boundary lubrication in sliding between aluminium and tool steels. Tribol. Lett. 66(3), 97 (2018). https://doi.org/10.1007/s11249-018-1048-4

    Article  CAS  Google Scholar 

  33. Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science. 328(5974), 76–80 (2010). https://doi.org/10.1126/science.1184167

    Article  CAS  Google Scholar 

  34. Gabriel, P., Thomas, A.G., Busfield, J.J.C.: Influence of interface geometry on rubber friction. Wear. 268(5–6), 747–750 (2010). https://doi.org/10.1016/j.wear.2009.11.019

    Article  CAS  Google Scholar 

  35. Ben-David, O., Fineberg, J.: Static Friction Coefficient Is Not a Material Constant. Phys. Rev. Lett. 106(25), 254301 (2011)

    Article  Google Scholar 

  36. Zhou, C.J., Hu, B., Qian, X.L., Han, X.: A novel prediction method for gear friction coefficients based on a computational inverse technique. Tribol. Int. 127, 200–208 (2018). https://doi.org/10.1016/j.triboint.2018.06.005

    Article  Google Scholar 

  37. Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015). https://doi.org/10.1016/j.triboint.2015.07.014

    Article  CAS  Google Scholar 

  38. Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., Hokkirigawa, K.: Effect of porosity and normal load on dry sliding friction of polymer foam blocks. Tribol. Lett. 66(1), 34 (2018). https://doi.org/10.1007/s11249-018-0988-z

    Article  CAS  Google Scholar 

  39. Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., Hokkirigawa, K.: Dry sliding friction of ethylene vinyl acetate blocks: Effect of the porosity. Tribol. Int. 116, 264–271 (2017). https://doi.org/10.1016/j.triboint.2017.07.022

    Article  CAS  Google Scholar 

  40. Maegawa, S., Itoigawa, F., Nakamura, T.: A role of friction-induced torque in sliding friction of rubber materials. Tribol. Int. 93, 182–189 (2016). https://doi.org/10.1016/j.triboint.2015.08.030

    Article  CAS  Google Scholar 

  41. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. EPL. 92(5), 620–622 (2010). https://doi.org/10.1209/0295-5075/92/54001

    Article  CAS  Google Scholar 

  42. Mcadams, S.D., Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Effects of interlayers on the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates. MRS Online Proc. Libr. Arch. (1994). https://doi.org/10.1557/PROC-356-809

    Article  Google Scholar 

  43. Scharf, T.W., Barnard, J.A.: Nanotribology of ultrathin a: SiC/SiC-N overcoats using a depth sensing nanoindentation multiple sliding technique. Thin Solid Films. 308(1), 340–344 (1997). https://doi.org/10.1016/S0040-6090(97)00568-3

    Article  Google Scholar 

  44. Li, K.J., Ni, B.Y.H., Li, J.C.M.: Stick-slip in the scratching of styrene-acrylonitrile copolymer. J. Mater. Res. 11(6), 1574–1580 (1996). https://doi.org/10.1557/Jmr.1996.0197

    Article  CAS  Google Scholar 

  45. Gao, C.H., Liu, M.: Characterization of spherical indenter with fused silica under small deformation by Hertzian relation and Oliver and Pharr’s method. Vacuum. 153, 82–90 (2018). https://doi.org/10.1016/j.vacuum.2018.03.061

    Article  CAS  Google Scholar 

  46. Field, J.S., Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8(2), 297–306 (1993). https://doi.org/10.1557/Jmr.1993.0297

    Article  CAS  Google Scholar 

  47. Gao, C.H., Yao, L.G., Liu, M.: Berkovich nanoindentation of borosilicate K9 glass. Opt. Eng. 57(3) (2018). https://doi.org/10.1117/1.Oe.57.3.034104

  48. Zhao, G.F., Liu, M., An, Z.N., Ren, Y., Liaw, P.K., Yang, F.Q.: Electromechanical responses of Cu strips. J. Appl. Phys. 113(18) (2013). https://doi.org/10.1063/1.4804938

  49. Beake, B.D., Liskiewicz, T.W., Smith, J.F.: Deformation of Si(100) in spherical contacts—comparison of nano-fretting and nano-scratch tests with nano-indentation. Surf. Coat. Technol. 206(7), 1921–1926 (2011)

    Article  CAS  Google Scholar 

  50. Belak, J.: Nanotribology: modeling atoms when surfaces collide-energy and technology review. Energy Technol. Rev. (1994)

  51. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon, Oxford (1950)

    Google Scholar 

  52. Carreon, A.H., Funkenbusch, P.D.: Material specific nanoscratch ploughing friction coefficient. Tribol. Int. 126, 363–375 (2018). https://doi.org/10.1016/j.triboint.2018.05.027

    Article  Google Scholar 

  53. Benjamin, P., Weaver, C.: Measurement of Adhesion of thin films. Proc. Royal Soc. Lond. 254(1277), 163–176 (1960)

    Article  CAS  Google Scholar 

  54. Laugier, M.T.: An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films. 117(4), 243–249 (1984). https://doi.org/10.1016/0040-6090(84)90354-7

    Article  CAS  Google Scholar 

  55. Laugier, M.T.: Adhesion of Tic and Tin coatings prepared by chemical vapor-deposition on Wc-Co-based cemented carbides. J. Mater. Sci. 21(7), 2269–2272 (1986). https://doi.org/10.1007/Bf01114266

    Article  CAS  Google Scholar 

  56. Beegan, D., Chowdhury, S., Laugier, M.T.: A nanoindentation study of copper films on oxidised silicon substrates. Surf. Coat. Technol. 176(1), 124–130 (2003). https://doi.org/10.1016/S0257-8972(03)00774-6

    Article  CAS  Google Scholar 

  57. Liu, M.: Finite element analysis of large contact deformation of an elastic–plastic sinusoidal asperity and a rigid flat. Int. J. Solids Struct. 51(21–22), 3642–3652 (2014). https://doi.org/10.1016/j.ijsolstr.2014.06.026

    Article  Google Scholar 

  58. Liu, M., Proudhon, H.: Finite element analysis of contact deformation regimes of an elastic-power plastic hardening sinusoidal asperity. Mech. Mater. 103, 78–86 (2016). https://doi.org/10.1016/j.mechmat.2016.08.015

    Article  Google Scholar 

  59. Zok, F.W., Miserez, A.: Property maps for abrasion resistance of materials. Acta Mater. 55(18), 6365–6371 (2007). https://doi.org/10.1016/j.actamat.2007.07.042

    Article  CAS  Google Scholar 

  60. Shih, M.H., Yu, C.Y., Kao, P.W., Chang, C.P.: Microstructure and flow stress of copper deformed to large plastic strains. Scripta Mater. 45(7), 793–799 (2001)

    Article  CAS  Google Scholar 

  61. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  62. Akono, A.T., Reis, P.M., Ulm, F.J.: Scratching as a fracture process: from butter to steel. Phys. Rev. Lett. 106(20), 204302 (2011). https://doi.org/10.1103/PhysRevLett.106.204302

    Article  CAS  Google Scholar 

  63. Akono, A.T., Ulm, F.J.: Fracture scaling relations for scratch tests of axisymmetric shape. J. Mech. Phys. Solids. 60(3), 379–390 (2012). https://doi.org/10.1016/j.jmps.2011.12.009

    Article  CAS  Google Scholar 

  64. Akono, A.T., Ulm, F.J.: Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 78(2), 334–342 (2011). https://doi.org/10.1016/j.engfracmech.2010.09.017

    Article  Google Scholar 

  65. Singh, A., Tang, L., Dao, M., Lu, L., Suresh, S.: Fracture toughness and fatigue crack growth characteristics of nanotwinned copper. Acta Mater. 59(6), 2437–2446 (2011). https://doi.org/10.1016/j.actamat.2010.12.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant Nos. 51705082 and 51875106) and Fujian Provincial Collaborative Innovation Center for High-end Equipment Manufacturing (No. 0020-50006103). M. Liu is also grateful for the support from Fujian Provincial Minjiang Scholar Program (N0. 0020-510486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Liu, M. Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter. Tribol Lett 67, 8 (2019). https://doi.org/10.1007/s11249-018-1124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1124-9

Keywords

Navigation