Skip to main content
Log in

Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article presents a novel microscratch technique for the determination of the fracture toughness of materials from scratch data. While acoustic emission and optical imaging devices provide quantitative evidence of fracture processes during scratch tests, the technique proposed here provides a quantitative means to assess the fracture toughness from the recorded forces and depth of penetration. We apply the proposed method to a large range of materials, from soft (polymers) to hard (metal), spanning fracture toughness values over more than two orders of magnitude. The fracture toughness values so obtained are in excellent agreement with toughness values obtained for the same materials by conventional fracture tests. The fact that the proposed microscratch technique is highly reproducible, almost nondestructive, and requires only small material volumes makes this technique a powerful tool for the assessment of fracture properties for microscale materials science and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I
FIG. 3
FIG. 4
TABLE II
FIG. 5
TABLE III
FIG. 6
TABLE IV
FIG. 7
FIG. 8
FIG. 9
FIG. 10
TABLE V

Similar content being viewed by others

References

  1. C. Anunmana, K.J. Anusavice, and J.J. Mecholsky Jr.: Residual stress in glass: Indentation crack and fractography approaches. Dent. Mater. 25, 1453 (2009).

    Article  CAS  Google Scholar 

  2. D.S. Harding, W.C. Oliver, and G.M. Pharr: Cracking during nano indentation and its use in the measurement of fracture toughness. Mater. Res. Soc. Symp. Proc. 356, 663 (1995).

    Article  CAS  Google Scholar 

  3. G.D. Quinn and R.C. Bradt: On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673 (2007).

    Article  CAS  Google Scholar 

  4. S. Widjaja, T.H. Yip, and A.M. Limarga: Measurement of creep-induced localized residual stress in soda-lime glass using nano-indentation technique. Mater. Sci. Eng., A 318, 211 (2001).

    Article  Google Scholar 

  5. ASTM C1624-05, Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing.

  6. H. Ollendorf and D. Schneider: A comparative study of adhesion test methods for hard coatings. Surf. Coat. Technol. 113, 86 (1999).

    Article  CAS  Google Scholar 

  7. F. Wredenberg and P.L. Larsson: Scratch testing of metals and polymers: Experiments and numerics. Wear 266, 76 (2009).

    Article  CAS  Google Scholar 

  8. ASTM G-171 03, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus.

  9. R. Bard and F.-J. Ulm: Scratch hardness strength solutions for cohesive–frictional materials. Int. J. Numer. Anal. Methods Geomech. (2010)., doi: 10.1002/nag.1008.

    Google Scholar 

  10. G.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).

    Article  Google Scholar 

  11. A.-T. Akono, P.M. Reis, and F.-J. Ulm: Scratching as a fracture process: From butter to steel. Phys. Rev. Lett. 106, 204302 (2011).

    Article  Google Scholar 

  12. A.-T. Akono and F.-J. Ulm: Fracture scaling relations for scratch tests of axisymmetric shape. J. Mech. Phys. Solids (2012). In press.

    Google Scholar 

  13. M. Miller, C. Bobko, M. Vandamme, and F.-J. Ulm: Surface roughness criteria for cement paste nanoindentation. Cem. Concr. Res. 38, 467 (2008).

    Article  CAS  Google Scholar 

  14. N.X. Randall, G. Favaro, and C.H. Frankel: The effect of intrinsic parameters on the critical load as measured with the scratch test method. Surf. Coat. Technol. 137, 146 (2001).

    Article  CAS  Google Scholar 

  15. B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  16. M.R. VanLandingham, T.F. Juliano, and M.J. Hagon: Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol. 16, 2173 (2005).

    Article  CAS  Google Scholar 

  17. R.W. Hertzberg, M.D. Skibo, and J.A. Manson: Fatigue crack propagation in polyacetal. J. Mater. Sci. 13, 1038 (1978).

    Article  CAS  Google Scholar 

  18. A.J. Hill and C.M. Agrawal: Positron lifetime spectroscopy characterization of thermal history effects on polycarbonate. J. Mater. Sci. 25, 5036 (1990).

    Article  CAS  Google Scholar 

  19. M.L. Bauccio: ASM Metals Reference Book, 3rd ed. ASM International, Materials Park, OH, 1993).

    Google Scholar 

  20. W.T. Matthews: Data Handbook for Metals (AMMRC MS73-6, U.S. Army Materials and Mechanics Research Center, Watertown, MA, 1973).

    Google Scholar 

  21. A.-T. Akono and F.-J. Ulm: Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 78, 334 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Ulm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akono, AT., Randall, N.X. & Ulm, FJ. Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. Journal of Materials Research 27, 485–493 (2012). https://doi.org/10.1557/jmr.2011.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.402

Navigation