Skip to main content
Log in

A Statistical Investigation of the Neupert Effect in Solar Flares Observed with ASO-S/HXI

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

The Neupert effect refers to the strong correlation between the soft X-ray (SXR) light curve and the time-integrated hard X-ray (HXR) or microwave flux, which is frequently observed in solar flares. In this article, we therefore utilized the newly launched Hard X-ray Imager (HXI) on board the Advanced Space-based Solar Observatory to investigate the Neupert effect during solar flares. By checking the HXR light curves at 20 – 50 keV, a sample of 149 events that cover the flare impulsive phase were selected. Then, we performed a crosscorrelation analysis between the HXR fluence (i.e., the time integral of the HXR flux) and the SXR 1 – 8 Å flux measured by the Geostationary Operational Environmental Satellite. All the selected flares show high correlation coefficients (>0.90), which seem to be independent of the flare location and class. The HXR fluences tend to increase linearly with the SXR peak fluxes. Our observations indicate that all the selected flares obey the Neupert effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

No datasets were generated during the current study.

Notes

  1. https://www.solarmonitor.org/?date=20230509.

  2. https://www.solarmonitor.org/?date=20230619.

  3. http://www.ioffe.ru/LEA/kwsun/.

References

  • Battaglia, M., Fletcher, L., Benz, A.O.: 2009, Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A Process for Flares. NASA Special Publication 50 451. ADS.

  • Chen, Y., Wu, Z., Liu, W., Schwartz, R.A., Zhao, D., Wang, B., Du, G.: 2017, Double-coronal X-ray and microwave sources associated with a magnetic breakout solar eruption. Astrophys. J. 843, 8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Datlowe, D.W., Elcan, M.J., Hudson, H.S.: 1974, OSO-7 observations of solar X-rays in the energy range 10 100 keV. Solar Phys. 39, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R.: 1988, Solar flare hard X-ray observations. Solar Phys. 118, 49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect: what can it tell up about the impulsive and gradual phases of solar flares. Solar Phys. 146, 177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R., Veronig, A., Schwartz, R.A., Sui, L., Tolbert, A.K., Zarro, D.M., Rhessi Team: 2003, The Neupert effect and new RHESSI measures of the total energy in electrons accelerated in solar flares. Adv. Space Res. 32, 2459. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1990, The beam-driven chromospheric evaporation model of solar flares: a model not supported by observations from nonimpulsive large flares. Astrophys. J. 364, 322. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1985, Flare loop radiative hydrodynamics. V. Response to thick-target heating dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414. DOI. ADS.

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W.-Q., Zhu, C., Deng, Y.-Y., Li, H., Su, Y., Zhang, H.-Y., Chen, B., Zhang, Z., Wu, J., Deng, L., Huang, Y., Yang, J.-F., Cui, J.-J., Chang, J., Wang, C., Wu, J., Yin, Z.-S., Chen, W., Fang, C., Yan, Y.-H., Lin, J., Xiong, W.-M., Chen, B., Bao, H.-C., Cao, C.-X., Bai, Y.-P., Wang, T., Chen, B.-L., Li, X.-Y., Zhang, Y., Feng, L., Su, J.-T., Li, Y., Chen, W., Li, Y.-P., Su, Y.-N., Wu, H.-Y., Gu, M., Huang, L., Tang, X.-J.: 2019, Advanced Space-based Solar Observatory (ASO-S): an overview. Res. Astron. Astrophys. 19, 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W., Zhu, C., Deng, Y., Zhang, Z., Chen, B., Huang, Y., Deng, L., Wu, H., Zhang, H., Li, H., Su, Y., Su, J., Feng, L., Wu, J., Cui, J., Wang, C., Chang, J., Yin, Z., Xiong, W., Chen, B., Yang, J., Li, F., Lin, J., Hou, J., Bai, X., Chen, D., Zhang, Y., Hu, Y., Liang, Y., Wang, J., Song, K., Guo, Q., He, L., Zhang, G., Wang, P., Bao, H., Cao, C., Bai, Y., Chen, B., He, T., Li, X., Zhang, Y., Liao, X., Jiang, H., Li, Y., Su, Y., Lei, S., Chen, W., Li, Y., Zhao, J., Li, J., Ge, Y., Zou, Z., Hu, T., Su, M., Ji, H., Gu, M., Zheng, Y., Xu, D., Wang, X.: 2023, The Advanced Space-Based Solar Observatory (ASO-S). Solar Phys. 298, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huang, Y., Li, H., Gan, W.-Q., Li, Y.-P., Su, J.-T., Deng, Y.-Y., Feng, L., Su, Y., Chen, W., Lei, S.-J., Li, Y., Ge, Y.-Y., Su, Y.-N., Liu, S.-M., Zang, J.-J., Xu, Z.-L., Bai, X.-Y., Li, J.-W.: 2019, The Science Operations and Data Center (SODC) of the ASO-S mission. Res. Astron. Astrophys. 19, 164. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1991, Differential emission-measure variations and the “Neupert effect”. In: Bulletin of the American Astronomical Society 23, 1064. ADS.

    Google Scholar 

  • Jiang, C., Feng, X., Liu, R., Yan, X., Hu, Q., Moore, R.L., Duan, A., Cui, J., Zuo, P., Wang, Y., Wei, F.: 2021, A fundamental mechanism of solar eruption initiation. Nat. Astron. 5, 1126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., Vlahos, L., White, S.M.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, T.T., Petrosian, V., McTiernan, J.M.: 1995, The Neupert effect and the chromospheric evaporation model for solar flares. Astrophys. J. 448, 915. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Hong, Z., Ning, Z.: 2022, Simultaneous observations of chromospheric evaporation and condensation during a C-class flare. Astrophys. J. 926, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Ning, Z.J., Zhang, Q.M.: 2015, Observational evidence of electron-driven evaporation in two solar flares. Astrophys. J. 813, 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Warmuth, A., Lu, L., Ning, Z.: 2021, An investigation of flare emissions at multiple wavelengths. Res. Astron. Astrophys. 21, 066. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Hou, Z., Bai, X., Li, C., Fang, M., Zhao, H., Wang, J., Ning, Z.: 2023c, Simultaneous detection of flare-associated kink oscillations and extreme-ultraviolet waves. Sci. China, Technol. Sci.. DOI. ADS.

    Article  Google Scholar 

  • Li, D., Li, C., Qiu, Y., Rao, S., Warmuth, A., Schuller, F., Zhao, H., Shi, F., Xu, J., Ning, Z.: 2023b, Observational signatures of electron-driven chromospheric evaporation in a white-light flare. Astrophys. J. 954, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Warmuth, A., Wang, J., Zhao, H., Lu, L., Zhang, Q., Dresing, N., Vainio, R., Palmroos, C., Paassilta, M., Fedeli, A., Dominique, M.: 2023a, Global energetics of solar powerful events on 2017 September 6. Res. Astron. Astrophys. 23, 095017. DOI. ADS.

    Article  ADS  Google Scholar 

  • Loto’aniu, T.M., Redmon, R.J., Califf, S., Singer, H.J., Rowland, W., Macintyre, S., Chastain, C., Dence, R., Bailey, R., Shoemaker, E., Rich, F.J., Chu, D., Early, D., Kronenwetter, J., Todirita, M.: 2019, The GOES-16 spacecraft science magnetometer. Space Sci. Rev. 215, 32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, G., Aurass, H., Warmuth, A.: 2006, Electron acceleration by the reconnection outflow shock during solar flares. Astron. Astrophys. 454, 969. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495. DOI. ADS.

    Article  ADS  Google Scholar 

  • McTiernan, J.M., Fisher, G.H., Li, P.: 1999, The solar flare soft X-ray differential emission measure and the Neupert effect at different temperatures. Astrophys. J. 514, 472. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Ireland, J.: 2018, On the performance of multi-instrument solar flare observations during solar cycle 24. Solar Phys. 293, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, Z.: 2008a, RHESSI microflares with quiet microwave emission. Astrophys. J. 686, 674. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, Z.: 2008b, RHESSI observations of the Neupert effect in three solar flares. Solar Phys. 248, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, Z.: 2009, The investigation of the Neupert effect in two solar flares. Sci. China, Phys. Mech. Astron. 52, 1686. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, Z., Cao, W.: 2010a, Investigation of chromospheric evaporation in a Neupert-type solar flare. Astrophys. J. 717, 1232. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ning, Z., Cao, W.: 2010b, Investigation of the Neupert effect in the various intervals of solar flares. Solar Phys. 264, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shang, Z., Xu, K., Liu, Y., Wu, Z., Lu, G., Zhang, Y., Zhang, L., Su, Y., Chen, Y., Yan, F.: 2022, A broadband solar radio dynamic spectrometer working in the millimeter-wave band. Astrophys. J. Suppl. 258, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shang, Z., Wu, Z., Liu, Y., Bai, Y., Lu, G., Zhang, Y., Zhang, L., Su, Y., Chen, Y., Yan, F.: 2023, The calibration of the 35-40 GHz solar radio spectrometer with the new moon and a noise source. Astrophys. J. Suppl. 268, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Starr, R., Heindl, W.A., Crannell, C.J., Thomas, R.J., Batchelor, D.A., Magun, A.: 1988, Energetics and dynamics of simple impulsive solar flares. Astrophys. J. 329, 967. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Veronig, A.M., Holman, G.D., Dennis, B.R., Wang, T., Temmer, M., Gan, W.: 2013, Imaging coronal magnetic-field reconnection in a solar flare. Nat. Phys. 9, 489. DOI. ADS.

    Article  Google Scholar 

  • Su, Y., Liu, W., Li, Y.-P., Zhang, Z., Hurford, G.J., Chen, W., Huang, Y., Li, Z.-T., Jiang, X.-K., Wang, H.-X., Xia, F.-X.-Y., Chen, C.-X., Yu, W.-H., Yu, F., Wu, J., Gan, W.-Q.: 2019, Simulations and software development for the hard X-ray imager onboard ASO-S. Res. Astron. Astrophys. 19, 163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Chen, N.-H.: 2018, Multi-episode chromospheric evaporation observed in a solar flare. Astrophys. J. 856, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Young, P.R., Reeves, K.K., Chen, B., Liu, W., McKillop, S.: 2015, Temporal evolution of chromospheric evaporation: case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10. Astrophys. J. 811, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002a, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys. 392, 699. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A., Vršnak, B., Temmer, M., Hanslmeier, A.: 2002b, Relative timing of solar flares observed at different wavelengths. Solar Phys. 208, 297. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Brown, J.C., Dennis, B.R., Schwartz, R.A., Sui, L., Tolbert, A.K.: 2005, Physics of the Neupert effect: estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys. J. 621, 482. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2016, Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. II. Energetics and energy partition. Astron. Astrophys. 588, A116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2020, Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations. Discussion of recent studies. Astron. Astrophys. 644, A172. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Yang, L.H., Xue, Z.K., Mei, Z.X., Kong, D.F., Wang, J.C., Li, Q.L.: 2018, Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare. Astrophys. J. Lett. 853, L18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X., Xue, Z., Jiang, C., Priest, E.R., Kliem, B., Yang, L., Wang, J., Kong, D., Song, Y., Feng, X., Liu, Z.: 2022, Fast plasmoid-mediated reconnection in a solar flare. Nat. Commun. 13, 640. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, F., Wu, Z., Shang, Z., Wang, B., Zhang, L., Chen, Y.: 2023, The first flare observation with a new solar microwave spectrometer working in 35-40 GHz. Astrophys. J. Lett. 942, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, W.H., Li, Y.P., Gan, W.Q.: 2020, Statistical studies on modified Neupert effect. Acta Astron. Sin. 61, 53. ADS.

    ADS  Google Scholar 

  • Zhang, Z., Chen, D.-Y., Wu, J., Chang, J., Hu, Y.-M., Su, Y., Zhang, Y., Wang, J.-P., Liang, Y.-M., Ma, T., Guo, J.-H., Cai, M.-S., Zhang, Y.-Q., Huang, Y.-Y., Peng, X.-Y., Tang, Z.-B., Zhao, X., Zhou, H.-H., Wang, L.-G., Song, J.-X., Ma, M., Xu, G.-Z., Yang, J.-F., Lu, D., He, Y.-H., Tao, J.-Y., Ma, X.-L., Lv, B.-G., Bai, Y.-P., Cao, C.-X., Huang, Y., Gan, W.-Q.: 2019, Hard X-ray Imager (HXI) onboard the ASO-S mission. Res. Astron. Astrophys. 19, 160. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Funding

This work is funded by the National Key R&D Program of China 2022YFF0503002 (2022YFF0503000), NSFC under grants 12073081, 12333010. D. Li is supported by Yunnan Key Laboratory of Solar Physics and Space Science under the number YNSPCC202207. This work is also supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB0560000. ASO-S mission is supported by the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, Grant No. XDA15320000.

Author information

Authors and Affiliations

Authors

Contributions

Z. J. Ning provided the idea, D. Li led this work and wrote the manuscript. H. Y. Dong participated in data analysis, W. Chen, Y. Su and Y. Huang participated the HXI data correction and some discussions. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Dong, H., Chen, W. et al. A Statistical Investigation of the Neupert Effect in Solar Flares Observed with ASO-S/HXI. Sol Phys 299, 57 (2024). https://doi.org/10.1007/s11207-024-02299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02299-7

Keywords

Navigation