Skip to main content

Advertisement

Log in

Efficacy of antiresorptive agents in fibrous dysplasia and McCune Albright syndrome, a systematic review and meta-analysis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Fibrous dysplasia (FD) is a rare skeletal disorder in which normal bone is replaced by a fibro-osseous tissue, resulting in possible deformities and fractures. The aim of this systematic review and meta-analysis was to synthesize the available evidence on the use of antiresorptive drugs in FD in terms of changes in bone turnover markers (BTMs), bone mineral density (BMD), and reducing pain. Three databases were searched in October 2022, with an update in July 2023. Of the 1037 studies identified, 21 were retained after eligibility assessment. A random-effects model was used to calculate global effect size and the corresponding standard error. Pamidronate and Denosumab were the most reported drugs in a total of 374 patients assessed. The initiation of treatments was accompanied by an average reduction of 40.5% [CI95% -51.6, -29.3] in the bone resorption parameters, and 22.0% [CI95% -31.9, -12.1] in the parameters of bone formation after 6–12 months. BMD was increased in both FD lesions and in the unaffected skeleton. Pain was reduced by 32.7% [CI95% -52.7, -12.6] after 6–12 months of treatment, and by 44.5% [CI95% -65.3, -23.6] after a mean 41.2 months of follow-up. The variation in pain was highly correlated to variation in bone resorption (R2 = 0.08, p < 0.0001) and formation parameters (R2 = 0.17, p < 0.0001). This study supports the overall efficacy of antiresorptive therapies in terms of reducing bone remodeling, improving bone density, and pain in FD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

99Tc-MDP:

99Tc-methylene diphosphonate

ALP:

Alkaline phosphatase

BMD:

Bone mineral density

BMSCs:

Bone marrow stromal cells

BPI:

Brief pain inventory

BPs:

Bisphosphonates

BTMs:

Bone turnover markers

cAMP:

Cyclic adenosine monophosphate (cAMP)

CI:

Confidence interval

CT:

Computed tomography

CTX:

Serum C-telopeptides of type I collagen

d:

Day

Dmab:

Denosumab

DPD:

Deoxypyridinoline

DXA:

Dual-energy x-ray absorptiometry

FD:

Fibrous dysplasia

FDG:

[18F]-fluorodeoxyglucose

Gsα:

Stimulatory α-subunit of the G-protein

i.v.:

Intravenous

Il-6:

Interleukin-6

IQR:

Interquartile range

MAS:

McCune Albright syndrome

MFD:

Monostotic FD

NGF:

Nerve growth factor

NIH:

National Institutes of Health

NMD:

Normalized mean difference

NRS:

Numeric rating scale

NSAIDs:

Non-steroidal anti-inflammatory drugs

NTX:

Urinary N-telopeptides of type I collagen

OC:

Octeocalcin

ONJ:

Osteonecrosis of the jaw

P1NP:

Procollagen I N-propeptide

PDE4:

Phosphodiesterase type 4

PET:

Positron emission tomography

PFD:

Polyostotic FD

PRISMA:

Preferred Reporting Items for Systematic reviews and Meta-Analysis

PTHrP:

Parathyroid hormone-related protein

RCTs:

Randomized control trials

s.c.:

Subcutaneous

SBS:

Skeletal burden score

SD:

Standard deviation

SE:

Standard error

SS:

Suramin sodium

TrkA:

Tyrosine kinase A

TRPA1:

Transient receptor potential ankyrin 1

VAS:

Visual analog scale

References

  1. Lietman SA, Levine MA. Fibrous dysplasia. Pediatr Endocrinol Rev PER. 2013;10(Suppl 2):389–96.

    PubMed  Google Scholar 

  2. Chapurlat RD, Orcel P. Fibrous dysplasia of bone and McCune-Albright syndrome. Best Pract Res Clin Rheumatol. 2008;22:55–69. https://doi.org/10.1016/j.berh.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  3. Boyce AM, Collins MT. Fibrous Dysplasia/McCune-Albright Syndrome: A Rare, Mosaic Disease of Gα s Activation. Endocr Rev. 2020;41:345–70. https://doi.org/10.1210/endrev/bnz011.

    Article  PubMed  Google Scholar 

  4. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95. https://doi.org/10.1056/NEJM199112123252403.

    Article  CAS  PubMed  Google Scholar 

  5. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340:692–6. https://doi.org/10.1038/340692a0.

    Article  CAS  PubMed  Google Scholar 

  6. Hu Q, Shokat KM. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell. 2018;173:1254-1264.e11. https://doi.org/10.1016/j.cell.2018.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Castro LF, Burke AB, Wang HD, Tsai J, Florenzano P, Pan KS, et al. Activation of RANK/RANKL/OPG Pathway Is Involved in the Pathophysiology of Fibrous Dysplasia and Associated With Disease Burden. J Bone Miner Res Off J Am Soc Bone Miner Res. 2019;34:290–4. https://doi.org/10.1002/jbmr.3602.

    Article  CAS  Google Scholar 

  8. Riminucci M, Kuznetsov SA, Cherman N, Corsi A, Bianco P, Gehron RP. Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression. Bone. 2003;33:434–42.

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi T, Yoshida H, Tanaka S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun Rev. 2021;20:102884. https://doi.org/10.1016/j.autrev.2021.102884.

  10. Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14:139. https://doi.org/10.1186/s13023-019-1102-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burke AB, Collins MT, Boyce AM. Fibrous dysplasia of bone: craniofacial and dental implications. Oral Dis. 2017;23:697–708. https://doi.org/10.1111/odi.12563.

    Article  CAS  PubMed  Google Scholar 

  12. Hart ES, Kelly MH, Brillante B, Chen CC, Ziran N, Lee JS, et al. Onset, progression, and plateau of skeletal lesions in fibrous dysplasia and the relationship to functional outcome. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22:1468–74. https://doi.org/10.1359/jbmr.070511.

    Article  Google Scholar 

  13. Parisi MS, Oliveri B. Long-term pamidronate treatment of polyostotic fibrous dysplasia of bone: A case series in young adults. Curr Ther Res Clin Exp. 2009;70:161–72. https://doi.org/10.1016/j.curtheres.2009.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertin H, Huon JF, Guillot P, Longis J, Corre P, Bordereau S, et al. Fibrous dysplasia of the orbital region: Series of 12 cases and review of the literature. J Fr Ophtalmol. 2020;43:467–76. https://doi.org/10.1016/j.jfo.2019.10.012.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang O, Jiang Y, Li M, Xia W, Meng X, et al. Efficacy and safety of bisphosphonate therapy in mccune-albright syndrome–related polyostotic fibrous dysplasia: A single-center experience. Endocr Pr. 2019;25:23–30. https://doi.org/10.4158/EP-2018-0328.

    Article  Google Scholar 

  16. Chapurlat RD, Hugueny P, Delmas PD, Meunier PJ. Treatment of fibrous dysplasia of bone with intravenous pamidronate: long-term effectiveness and evaluation of predictors of response to treatment. Bone. 2004;35:235–42. https://doi.org/10.1016/j.bone.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  17. Chapurlat RD, Delmas PD, Liens D, Meunier PJ. Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. J Bone Min Res. 1997;12:1746–52. https://doi.org/10.1359/jbmr.1997.12.10.1746.

    Article  CAS  Google Scholar 

  18. Liens D, Delmas PD, Meunier PJ. Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. Lancet. 1994;343:953–4. https://doi.org/10.1016/S0140-6736(94)90069-8.

    Article  CAS  PubMed  Google Scholar 

  19. Boyce AM, Kelly MH, Brillante BA, Kushner H, Wientroub S, Riminucci M, et al. A randomized, double blind, placebo-controlled trial of alendronate treatment for fibrous dysplasia of bone. J Clin Endocrinol Metab. 2014;99:4133–40. https://doi.org/10.1210/jc.2014-1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chapurlat R, Legrand MA. Bisphosphonates for the treatment of fibrous dysplasia of bone. Bone. 2021;143. https://doi.org/10.1016/j.bone.2020.115784.

  21. Majoor BCJ, Papapoulos SE, Sander Dijkstra PD, Fiocco M, Hamdy NAT, Appelman-Dijkstra NM. Denosumab in Patients with Fibrous Dysplasia Previously Treated with Bisphosphonates. J Clin Endocrinol Metab. 2019;104:6069–78. https://doi.org/10.1210/jc.2018-02543.

    Article  PubMed  Google Scholar 

  22. Meier ME, Clerkx SN, Winter EM, Pereira AM, van de Ven AC, van de Sande MAJ, et al. Safety of therapy with and withdrawal from denosumab in fibrous dysplasia and McCune-Albright syndrome: an observational study. J Bone Min Res. 2021;36:1729–38. https://doi.org/10.1002/jbmr.4380.

    Article  CAS  Google Scholar 

  23. de Castro LF, Michel Z, Pan K, Taylor J, Szymczuk V, Paravastu S, et al. Safety and Efficacy of Denosumab for Fibrous Dysplasia of Bone. N Engl J Med. 2023;388:766–8. https://doi.org/10.1056/NEJMc2214862.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Valadares LP, de Araújo Ferreira BS, da Cunha BM, Moreira LA, Batista FGA, da Fonseca Hottz C, et al. Effects of zoledronic acid therapy in fibrous dysplasia of bone: a single-center experience. Arch Endocrinol Metab. 2022;66:247–55. https://doi.org/10.20945/2359-3997000000459.

  25. Tripathy S, Swaroop S, Velagada S, Priyadarshini D, Das R, Satpathy A, et al. Response to Zoledronic Acid Infusion in Children With Fibrous Dysplasia. Front Pediatr. 2020;8. https://doi.org/10.3389/fped.2020.582316.

  26. Chapurlat RD, Meunier PJ. Fibrous dysplasia of bone. Baillieres. Best Pract Res Clin Rheumatol. 2000;14:385–98. https://doi.org/10.1053/berh.1999.0071.

    Article  CAS  Google Scholar 

  27. Florenzano P, Pan KS, Brown SM, Guthrie LC, De Castro LF, Collins MT, et al. Age-related changes and the effect of bisphosphonates on bone turnover and disease progression in fibrous dysplasia of bone. J Bone Min Res. 2018;33:121.

    Google Scholar 

  28. Lala R, Matarazzo P, Andreo M, Marzari D, Bellone J, Corrias A, et al. Bisphosphonate treatment of bone fibrous dysplasia in McCune-Albright syndrome. J Pediatr Endocrinol Metab. 2006;19:583–93.

    Article  CAS  PubMed  Google Scholar 

  29. Plotkin H, Rauch F, Zeitlin L, Munns C, Travers R, Glorieux FH. Effect of Pamidronate Treatment in Children with Polyostotic Fibrous Dysplasia of Bone. J Clin Endocrinol Metab. 2003;88:4569–75. https://doi.org/10.1210/jc.2003-030050.

    Article  CAS  PubMed  Google Scholar 

  30. Isaia GC, Lala R, Defilippi C, Matarazzo P, Andreo M, Roggia C, et al. Bone turnover in children and adolescents with Mccune-Albright syndrome treated with pamidronate for bone fibrous dysplasia. Calcif Tissue Int. 2002;71:121–8. https://doi.org/10.1007/s00223-001-1098-7.

    Article  CAS  PubMed  Google Scholar 

  31. Zacharin M, O’Sullivan M. Intravenous pamidronate treatment of polyostotic fibrous dysplasia associated with the McCune Albright syndrome. J Pediatr. 2000;137:403–9. https://doi.org/10.1067/mpd.2000.107836.

    Article  CAS  PubMed  Google Scholar 

  32. Pfeilschifter J, Ziegler R. Effects of pamidronate on clinical symptoms and bone metabolism in patients with fibrous dysplasia and McCune-Albright-syndrome. Wirk Von Pamidronat Auf Beschwerdebild Knochenstoffwechsel Bei Fibroser Dysplasie McCune-Albright-Syndr. 1998;93:352–9. https://doi.org/10.1007/bf03044679.

    Article  CAS  Google Scholar 

  33. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

  34. Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving the translation of search strategies using the Polyglot Search Translator: a randomized controlled trial. J Med Libr Assoc JMLA. 2020;108:195–207. https://doi.org/10.5195/jmla.2020.834.

    Article  PubMed  Google Scholar 

  35. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity. 2020;6:13. https://doi.org/10.1038/s41526-020-0103-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boot AM, de Ridder MA, Pols HA, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 1997;82:57–62. https://doi.org/10.1210/jcem.82.1.3665.

    Article  CAS  PubMed  Google Scholar 

  38. National Institutes of Health (NIH). Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. 2013.

  39. Ozdemir Kutbay N, Sarer Yurekli B, Kartal Baykan E, Baydur Sahin S, Saygili F. Characteristics and treatment results of 5 patients with fibrous Dysplasia and review of the literature. Case Rep Endocrinol. 2015;2015. https://doi.org/10.1155/2015/670809.

  40. Van Der Bruggen W, Vriens D, Meier ME, Smit F, Winter EM, De Geus-Oei L-F, et al. Denosumab Reduces Lesional Fluoride Skeletal Burden on Na[18F]F PET-CT in Patients with Fibrous Dysplasia/McCune-Albright Syndrome. J Clin Endocrinol Metab. 2021;106:E2980–94. https://doi.org/10.1210/clinem/dgab212.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parisi MS, Oliveri B, Mautalen CA. Effect of intravenous pamidronate on bone markers and local bone mineral density in fibrous dysplasia. Bone. 2003;33:582–8. https://doi.org/10.1016/S8756-3282(03)00221-7.

    Article  CAS  PubMed  Google Scholar 

  42. Lane JM, Khan SN, O’Connor WJ, Nydick M, Hommen JP, Schneider R, et al. Bisphosphonate therapy in fibrous dysplasia. Clin Orthop Relat Res. 2001;382:6–12. https://doi.org/10.1097/00003086-200101000-00003.

    Article  Google Scholar 

  43. Trojani MC, Gensburger D, Bagouet F, Cortet B, Couture G, Marcelli C, et al. Denosumab use in bone fibrous dysplasia refractory to bisphosphonate: A retrospective multicentric study. Bone. 2023;174:116819. https://doi.org/10.1016/j.bone.2023.116819.

  44. Thomsen MD, Rejnmark L. Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia. Calcif Tissue Int. 2014;94:384–95. https://doi.org/10.1007/s00223-013-9829-0.

    Article  CAS  PubMed  Google Scholar 

  45. Chakraborty PP, Biswas SN, Patra S, Santra G. “Zebra Stripe” Sign and “Bone in Bone” Sign in Cyclical Bisphosphonate Therapy. J Clin Diagn Res. 2017;11:RJ01–2. https://doi.org/10.7860/JCDR/2017/24349.9177.

  46. Majoor BC, Appelman-Dijkstra NM, Fiocco M, van de Sande MA, Dijkstra PS, Hamdy NA. Outcome of Long-Term Bisphosphonate Therapy in McCune-Albright Syndrome and Polyostotic Fibrous Dysplasia. J Bone Miner Res Off J Am Soc Bone Miner Res. 2017;32:264–76. https://doi.org/10.1002/jbmr.2999.

    Article  CAS  Google Scholar 

  47. Raborn LN, Burke AB, Ebb DH, Collins MT, Kaban LB, Boyce AM. Denosumab for craniofacial fibrous dysplasia: duration of efficacy and post-treatment effects. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2021;32:1889–93. https://doi.org/10.1007/s00198-021-05895-6.

    Article  CAS  Google Scholar 

  48. Tucker-Bartley A, Selen DJ, Golden E, van Gool R, Ebb D, Mannstadt M, et al. Pharmacological Interventions Targeting Pain in Fibrous Dysplasia/McCune-Albright Syndrome. Int J Mol Sci. 2023;24:2550. https://doi.org/10.3390/ijms24032550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huzum B, Antoniu S, Dragomir R. Treatment of fibrous dysplasia: focus on denosumab. Expert Opin Biol Ther. 2022;22:397–405. https://doi.org/10.1080/14712598.2022.2022118.

    Article  CAS  PubMed  Google Scholar 

  50. Chapurlat R, Gensburger D, Trolliet C, Rouanet S, Mehsen-Cetre N, Orcel P. Inhibition of IL-6 in the treatment of fibrous dysplasia of bone: the randomized double-blind placebo-controlled TOCIDYS trial. Bone. 2022;157:116343. https://doi.org/10.1016/j.bone.2022.116343.

  51. Robinson C, Collins MT, Boyce AM. Fibrous Dysplasia/McCune-Albright Syndrome: Clinical and Translational Perspectives. Curr Osteoporos Rep. 2016;14:178–86. https://doi.org/10.1007/s11914-016-0317-0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saggio I. Perils and Promises of Therapeutic Approaches for the Stem Cell Disease Fibrous Dysplasia. Stem Cells Transl Med. 2019;8:110–1. https://doi.org/10.1002/sctm.18-0213.

    Article  PubMed  Google Scholar 

  53. Lv M, Li X, Huang Y, Wang N, Zhu X, Sun J. Inhibition of fibrous dysplasia via blocking Gsα with suramin sodium loaded with an alendronate-conjugated polymeric drug delivery system. Biomater Sci. 2016;4:1113–22. https://doi.org/10.1039/c6bm00091f.

    Article  CAS  PubMed  Google Scholar 

  54. Khan SK, Yadav PS, Elliott G, Hu DZ, Xu R, Yang Y. Induced GnasR201H expression from the endogenous Gnas locus causes fibrous dysplasia by up-regulating Wnt/β-catenin signaling. Proc Natl Acad Sci USA. 2018;115:E418–27. https://doi.org/10.1073/pnas.1714313114.

    Article  CAS  PubMed  Google Scholar 

  55. Shen L, He Y, Chen S, He L, Zhang Y. PTHrP Modulates the Proliferation and Osteogenic Differentiation of Craniofacial Fibrous Dysplasia-Derived BMSCs. Int J Mol Sci. 2023;24:7616. https://doi.org/10.3390/ijms24087616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fontalis A, Eastell R. The challenge of long-term adherence: The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis. Bone. 2020;136:115336. https://doi.org/10.1016/j.bone.2020.115336.

  57. Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev. 2022:bnac031. https://doi.org/10.1210/endrev/bnac031.

  58. Winter EM, Kooijman S, Appelman-Dijkstra NM, Meijer OC, Rensen PC, Schilperoort M. Chronobiology and Chronotherapy of Osteoporosis. JBMR Plus. 2021;5:e10504. https://doi.org/10.1002/jbm4.10504.

  59. Meier ME, Hagelstein-Rotman M, Streefland TCM, Winter EM, Bravenboer N, Appelman-Dijkstra NM. Clinical value of RANKL, OPG, IL-6 and sclerostin as biomarkers for fibrous dysplasia/McCune-Albright syndrome. Bone. 2023:116744. https://doi.org/10.1016/j.bone.2023.116744.

  60. van der Bruggen W, Hagelstein-Rotman M, de Geus-Oei L-F, Smit F, Dijkstra PDS, Appelman-Dijkstra NM, et al. Quantifying skeletal burden in fibrous dysplasia using sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:1527–37. https://doi.org/10.1007/s00259-019-04657-1.

    Article  CAS  PubMed  Google Scholar 

  61. Legrand MA, Millet M, Merle B, Rousseau JC, Hemmendinger A, Gineyts E, et al. A Signature of Circulating miRNAs Associated With Fibrous Dysplasia of Bone: the mirDys Study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2020;35:1881–92. https://doi.org/10.1002/jbmr.4111.

    Article  CAS  Google Scholar 

  62. Collins MT, Kushner H, Reynolds JC, Chebli C, Kelly MH, Gupta A, et al. An instrument to measure skeletal burden and predict functional outcome in fibrous dysplasia of bone. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005;20:219–26. https://doi.org/10.1359/JBMR.041111.

    Article  Google Scholar 

  63. Jreige M, Hall N, Becce F, Aubry-Rozier B, Gonzalez Rodriguez E, Schaefer N, et al. A novel approach for fibrous dysplasia assessment using combined planar and quantitative SPECT/CT analysis of Tc-99m-diphosphonate bone scan in correlation with biological bone turnover markers of disease activity. Front Med. 2022;9:1050854. https://doi.org/10.3389/fmed.2022.1050854.

    Article  Google Scholar 

  64. Weidner LD, Wakabayashi Y, Stolz LA, Collins MT, Guthrie L, Victorino M, et al. PET Imaging of Phosphodiesterase-4 Identifies Affected Dysplastic Bone in McCune-Albright Syndrome, a Genetic Mosaic Disorder. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1672–7. https://doi.org/10.2967/jnumed.120.241976.

    Article  CAS  Google Scholar 

  65. Wang Y, Wu J, Liu L, Peng D, Chen Y. 68Ga-FAPI-04 PET/CT Imaging for Fibrous Dysplasia of the Bone. Clin Nucl Med. 2022;47:e9-10. https://doi.org/10.1097/RLU.0000000000003896.

    Article  PubMed  Google Scholar 

  66. Pozzessere C, Cicone F, Barberio P, Papa A, Coppolino G, Biagini R, et al. Cross-sectional evaluation of FGD-avid polyostotic fibrous dysplasia: MRI, CT and PET/MRI findings. Eur J Hybrid Imaging. 2022;6:19. https://doi.org/10.1186/s41824-022-00139-0.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Majoor BCJ, Traunmueller E, Maurer-Ertl W, Appelman-Dijkstra NM, Fink A, Liegl B, et al. Pain in fibrous dysplasia: relationship with anatomical and clinical features. Acta Orthop. 2019;90:401–5. https://doi.org/10.1080/17453674.2019.1608117.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chapurlat RD, Gensburger D, Jimenez-Andrade JM, Ghilardi JR, Kelly M, Mantyh P. Pathophysiology and medical treatment of pain in fibrous dysplasia of bone. Orphanet J Rare Dis. 2012;7(Suppl 1):S3. https://doi.org/10.1186/1750-1172-7-S1-S3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Spencer TL, Watts L, Soni A, Pinedo-Villanueva R, Heegaard A-M, Boyce AM, et al. Neuropathic-like Pain in Fibrous Dysplasia/McCune-Albright Syndrome. J Clin Endocrinol Metab. 2022;107:e2258–66. https://doi.org/10.1210/clinem/dgac120.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rijks EBG, Bongers BC, Vlemmix MJG, Boot AM, van Dijk ATH, Sakkers RJB, et al. Efficacy and Safety of Bisphosphonate Therapy in Children with Osteogenesis Imperfecta: A Systematic Review. Horm Res Paediatr. 2015;84:26–42. https://doi.org/10.1159/000381713.

    Article  CAS  PubMed  Google Scholar 

  71. Rotman M, Hamdy NAT, Appelman-Dijkstra NM. Clinical and translational pharmacological aspects of the management of fibrous dysplasia of bone. Br J Clin Pharmacol. 2019;85:1169–79. https://doi.org/10.1111/bcp.13820.

    Article  PubMed  Google Scholar 

  72. Colloca L. The Placebo Effect in Pain Therapies. Annu Rev Pharmacol Toxicol. 2019;59:191–211. https://doi.org/10.1146/annurev-pharmtox-010818-021542.

    Article  CAS  PubMed  Google Scholar 

  73. Oo WM, Hunter DJ. Nerve Growth Factor (NGF) Inhibitors and Related Agents for Chronic Musculoskeletal Pain: A Comprehensive Review. BioDrugs Clin Immunother Biopharm Gene Ther. 2021;35:611–41. https://doi.org/10.1007/s40259-021-00504-8.

    Article  CAS  Google Scholar 

  74. de Almeida AS, Pereira GC, da Brum ES, Silva CR, de Antoniazzi CTD, Ardisson-Araujo D, et al. Role of TRPA1 expressed in bone tissue and the antinociceptive effect of the TRPA1 antagonist repeated administration in a breast cancer pain model. Life Sci. 2021;276:119469. https://doi.org/10.1016/j.lfs.2021.119469.

  75. Daut RL, Cleeland CS, Flanery RC. Development of the Wisconsin Brief Pain Questionnaire to assess pain in cancer and other diseases. Pain. 1983;17:197–210. https://doi.org/10.1016/0304-3959(83)90143-4.

    Article  PubMed  Google Scholar 

  76. Sampayo-Cordero M, Miguel-Huguet B, Pardo-Mateos A, Moltó-Abad M, Muñoz-Delgado C, Pérez-López J. Agreement between the results of meta-analyses from case reports and from clinical studies regarding the efficacy of laronidase therapy in patients with mucopolysaccharidosis type I who initiated enzyme replacement therapy in adult age: An example of case reports meta-analyses as an useful tool for evidence-based medicine in rare diseases. Mol Genet Metab. 2018;123:69–75. https://doi.org/10.1016/j.ymgme.2018.01.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Nantes University Hospital, the Région Pays de la Loire – France (PULSAR), the Association française des chirurgiens de la face (AFCF), and the Fondation les Gueules Cassées (2018-51). The sponsors had no role in the study design, collection, analysis, interpretation and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Idea for the article: Hélios Bertin; literature search: Hélios Bertin and Mahmoud Moussa; data analysis: Hélios Bertin; supervision: Svetlana Komarova; writing – original draft preparation: Hélios Bertin; writin – review and editing: Hélios Bertin, Mahmoud Moussa, and Svetlana Komarova.

Corresponding author

Correspondence to Hélios Bertin.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertin, H., Moussa, M.S. & Komarova, S. Efficacy of antiresorptive agents in fibrous dysplasia and McCune Albright syndrome, a systematic review and meta-analysis. Rev Endocr Metab Disord 24, 1103–1119 (2023). https://doi.org/10.1007/s11154-023-09832-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09832-2

Keywords

Navigation