Skip to main content
Log in

Two-partite entanglement purification assisted by quantum-dot spins inside single-sided optical microcavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement purification is an important and useful tool in quantum communications that allows parties to enhance the entanglement of a set of less-entangled particles using local operations and classical communication. Utilizing photon polarization parity checks implemented through the coupling system between a single-sided cavity and a charged quantum dot, an entanglement purification scheme is proposed in this paper. The fidelity and the success probability of the scheme are calculated under bit-flip error channel and depolarizing channel, respectively. Furthermore, the impact of imperfect quantum-dot-cavity coupling system is investigated, and the feasibility is discussed. In the strong coupling and weak cavity side leakage regime, our scheme can approach the maximal fidelities and success probabilities in theory. So the scheme has potential applications in long-distance quantum communication with the development of relevant technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  Google Scholar 

  4. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–55 (2000). https://doi.org/10.1038/35005001

    Article  ADS  Google Scholar 

  6. Sharma, V., Gupta, S., Mehta, G., Lad, B.K.: A quantum-based diagnostics approach for additive manufacturing machine. IET Collab. Intell. Manuf. 3, 184–192 (2021). https://doi.org/10.1049/cim2.12022

    Article  Google Scholar 

  7. Sharma, V.: Effect of noise on practical quantum communication systems. Def. Sci. J. 66, 186–192 (2016). https://doi.org/10.14429/dsj.66.9771

    Article  Google Scholar 

  8. Sharma, V., Bhardwaj, A.: Analysis of differential phase shift quantum key distribution using single-photon detectors. In: 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 17–18. IEEE (2022). https://doi.org/10.1109/NUSOD54938.2022.9894772

  9. Sharma, V., Banerjee, S.: Analysis of quantum key distribution based satellite communication. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5. IEEE (2018). https://doi.org/10.1109/ICCCNT.2018.8494189

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  11. Pan, J.-W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001). https://doi.org/10.1038/35074041

    Article  ADS  Google Scholar 

  12. Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008). https://doi.org/10.1103/PhysRevA.77.042308

    Article  ADS  Google Scholar 

  13. Sheng, Y.-B., Deng, F.-G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010). https://doi.org/10.1103/PhysRevA.82.044305

    Article  ADS  Google Scholar 

  14. Deng, F.-G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011). https://doi.org/10.1103/PhysRevA.84.052312

    Article  ADS  Google Scholar 

  15. Zhang, H., Liu, Q., Xu-Sheng, X., Xiong, J., Alsaedi, A., Hayat, T., Deng, F.-G.: Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED. Phys. Rev. A 96, 052330 (2017). https://doi.org/10.1103/PhysRevA.96.052330

    Article  ADS  Google Scholar 

  16. Miguel-Ramiro, J., Dür, W.: Efficient entanglement purification protocols for d-level systems. Phys. Rev. A 98, 042309 (2018). https://doi.org/10.1103/PhysRevA.98.042309

    Article  ADS  Google Scholar 

  17. Liu, Z.-C., Hong, J.-S., Guo, J.-J., Li, T., Ai, Q., Alsaedi, A., Hayat, T., Deng, F.-G.: Entanglement purification of nonlocal quantum-dot-confined electrons assisted by double-sided optical microcavities. Ann. Phys. 530, 1800029 (2018). https://doi.org/10.1002/andp.201800029

    Article  MathSciNet  Google Scholar 

  18. Wang, G.-Y., Li, T., Ai, Q., Alsaedi, A., Hayat, T., Deng, F.-G.: Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems. Phys. Rev. Appl. 10, 054058 (2018). https://doi.org/10.1103/PhysRevApplied.10.054058

    Article  ADS  Google Scholar 

  19. Riera-Sàbat, F., Sekatski, P., Pirker, A., Dür, W.: Entanglement-assisted entanglement purification. Phys. Rev. Lett. 127, 040502 (2021). https://doi.org/10.1103/PhysRevLett.127.040502

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, Y.-T., Yi-Ming, W., Fang-Fang, D.: Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities. Chin. Phys. B 31, 050303 (2022). https://doi.org/10.1088/1674-1056/ac4489

    Article  ADS  Google Scholar 

  21. Xiao-Min, H., Huang, C.-X., Sheng, Y.-B., Zhou, L., Bi-Heng Liu, Yu., Guo, C.Z., Xing, W.-B., Huang, Y.-F., Li, C.-F., Guo, G.-C.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021). https://doi.org/10.1103/PhysRevLett.126.010503

    Article  Google Scholar 

  22. Yan, H., Zhong, Y., Chang, H.-S., Bienfait, A., Chou, M.-H., Conner, C.R., Dumur, É., Grebel, J., Povey, R.G., Cleland, A.N.: Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128, 080504 (2022). https://doi.org/10.1103/PhysRevLett.128.080504

    Article  ADS  Google Scholar 

  23. Wang, C., Zhang, Y., Jin, G.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011). https://doi.org/10.1103/PhysRevA.84.032307

    Article  ADS  Google Scholar 

  24. Cao, C., Wang, C., He, L., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013). https://doi.org/10.1364/OE.21.004093

    Article  ADS  Google Scholar 

  25. Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013). https://doi.org/10.1103/PhysRevA.88.022302

    Article  ADS  Google Scholar 

  26. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-based entanglement purification for entangled coherent states. Front. Phys. 17, 21501 (2022). https://doi.org/10.1007/s11467-021-1103-8

    Article  ADS  Google Scholar 

  27. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003). https://doi.org/10.1038/nature01623

    Article  ADS  Google Scholar 

  28. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008). https://doi.org/10.1103/PhysRevB.78.085307

    Article  ADS  Google Scholar 

  29. Wei, H.-R., Deng, F.-G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013). https://doi.org/10.1103/PhysRevA.87.022305

    Article  ADS  Google Scholar 

  30. Ren, B.-C., Deng, F.-G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2015). https://doi.org/10.1038/srep04623

    Article  Google Scholar 

  31. Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron. 62, 970312 (2019). https://doi.org/10.1007/s11433-018-9338-8

    Article  ADS  Google Scholar 

  32. Liang, L.-X., Zheng, Y.-Y., Zhang, Y.-X., Zhang, M.: Error-detected N-photon cluster state generation based on the controlled-phase gate using a quantum dot in an optical microcavity. Front. Phys. 15, 21601 (2020). https://doi.org/10.1007/s11467-019-0931-2

    Article  ADS  Google Scholar 

  33. Dong, L., Lv, L., Yang, Z.-L., Liu, S.-T., Wang, X.-Y., Geng, X., Ren, Y.-P., Ji, Y.-Q., Xiu, X.-M.: Deterministic preparation of a hyper-entangled three-photon asymmetric W state assisted by the single-sided QD-cavity system. Adv. Quantum Technol. 5(11), 2200092 (2022). https://doi.org/10.1002/qute.202200092

    Article  Google Scholar 

  34. Hu, C.Y.: Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94, 245307 (2016). https://doi.org/10.1103/PhysRevB.94.245307

    Article  ADS  Google Scholar 

  35. Hu, C.Y.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017). https://doi.org/10.1038/srep45582

    Article  ADS  Google Scholar 

  36. Xia, B.-Y., Cao, C., Han, Y.-H., Zhang, R.: Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside single-sided optical microcavities. Laser Phys. 28, 095201 (2018). https://doi.org/10.1088/1555-6611/aac904

    Article  ADS  Google Scholar 

  37. Han, Y.-H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29, 20045 (2021). https://doi.org/10.1364/OE.426325

    Article  ADS  Google Scholar 

  38. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011). https://doi.org/10.1103/PhysRevB.83.115303

    Article  ADS  Google Scholar 

  39. Wei, H.-R., Deng, F.-G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014). https://doi.org/10.1364/OE.22.000593

    Article  ADS  Google Scholar 

  40. Lyasota, A., Jarlov, C., Nyman, M., Miranda, A., Calic, M., Dwir, B., Rudra, A., Shevchenko, A., Kapon, E.: Mode interference effect in optical emission of quantum dots in photonic crystal cavities. Phys. Rev. X 12, 021042 (2022). https://doi.org/10.1103/PhysRevX.12.021042

    Article  Google Scholar 

  41. Vajner, D.A., Rickert, L., Gao, T., Kaymazlar, K., Heindel, T.: Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022). https://doi.org/10.1002/qute.202100116

    Article  Google Scholar 

  42. Wang, M., Yao, N., Rongbo, W., Fang, Z., Lv, S., Zhang, J., Lin, J., Fang, W., Cheng, Y.: Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys. 22, 073030 (2020). https://doi.org/10.1088/1367-2630/ab97ea

    Article  ADS  Google Scholar 

  43. Gao, R., Zhang, H., Bo, F., Fang, W., Hao, Z., Yao, N., Lin, J., Guan, J., Deng, L., Wang, M., Qiao, L., Cheng, Y.: Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10 8. New J. Phys. 23, 123027 (2021). https://doi.org/10.1088/1367-2630/ac3d52

    Article  ADS  Google Scholar 

  44. Sharma, V.: Analysis of single photon detectors in differential phase shift quantum key distribution. Opt. Quantum Electron. 55, 888 (2023). https://doi.org/10.1007/s11082-023-05170-4

    Article  Google Scholar 

  45. Sharma, V., Banerjee, S.: Quantum communication using code division multiple access network. Opt. Quantum Electron. 52, 381 (2020). https://doi.org/10.1007/s11082-020-02494-3

    Article  Google Scholar 

  46. Kaushalram, A., Bhardwaj, A., Suchita, Vishal, S.: Investigation of avoided-crossings in five-tube hollow-core fibers in visible wavelength band. Front. Opt. Laser Sci. (2022). https://doi.org/10.1364/FIO.2022.JW4A.44

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12247214), the Liaoning Revitalization Talents Program (XLYC1807206), the LiaoNing BaiQianWan Talents Program (2021921096), the Natural Science Foundation of Liaoning Province (2021-MS-317, 2022-MS-372), and the Education Administration Program of Liaoning Province (LJKZ1015, LJKZZ20220120, JYTMS20231614).

Funding

National Natural Science Foundation of China (12247214), LiaoNing Revitalization Talents Program (XLYC1807206), LiaoNing BaiQianWan Talents program (2021921096), Natural Science Foundation of LiaoNing Province (2022-MS-372, 2021-MS-317), and Education Administration Program of Liaoning Province (LJKZZ20220120, LJKZ1015, JYTMS20231614).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Li Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, XM., Liu, ST., Wang, XY. et al. Two-partite entanglement purification assisted by quantum-dot spins inside single-sided optical microcavities. Quantum Inf Process 23, 116 (2024). https://doi.org/10.1007/s11128-024-04324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04324-x

Keywords

Navigation