Skip to main content
Log in

Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper demonstrates the use of entanglement resources in quantum speedup by presenting an algorithm which is the generalization of an algorithm proposed by Goswami and Panigrahi (Essentiality of entanglement in a quantum algorithm, 2017. arXiv:1706.09489). We generalize the algorithm and show that it provides deterministic solutions having an advantage over classical algorithm. The algorithm answers the question of whether a given function is constant or balanced and whether two functions are equal or unequal. Finally, we experimentally verify the algorithm by using IBM’s five-qubit quantum computer with a high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 439, 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Goswami, A.K., Panigrahi, P.K.: Essentiality of Entanglement in a Quantum Algorithm. (2017). arXiv:1706.09489

  4. IBM Q. http://research.ibm.com/ibm-q/. Accessed 16 May 2018

  5. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  6. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94(1), 012314 (2016)

    Article  ADS  Google Scholar 

  7. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18(7), 073004 (2016)

    Article  ADS  Google Scholar 

  8. Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94(3), 032329 (2016)

    Article  ADS  Google Scholar 

  9. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. PNAS 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  10. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2(1), 015006 (2017)

    Article  ADS  Google Scholar 

  11. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16, 76 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)

    Article  ADS  Google Scholar 

  14. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  Google Scholar 

  15. Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. (2017). arXiv:quant-ph/1707.07460v1

  16. Kalra, A.R., Prakash, S., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer (2017). arXiv:quant-ph/1707.09462v1

  17. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated Error Correction in IBM Quantum Computer and Explicit Generalization (2017). arXiv:1708.02297

  18. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Non-local Controlled-Unitary Quantum Gates Using a Five-Qubit Quantum Computer (2017). arXiv:1709.05697

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

SG is financially supported by KVPY scholarship. MP and BKB acknowledge the support of INSPIRE fellowship, awarded by the Department of Science and Technology, Government of India. SG and MP would like to thank IISER Kolkata for providing hospitality during which a part of this work was completed. We are extremely grateful to IBM quantum experience project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or any of it’s employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Additional information

Sayan Gangopadhyay and Manabputra have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, S., Manabputra, Behera, B.K. et al. Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf Process 17, 160 (2018). https://doi.org/10.1007/s11128-018-1932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1932-8

Keywords

Navigation